
From Trees To Graphs: Understanding The
Implications Of Sharing For Rewriting

Student. Maria A Schett
University of Innsbruck
Technikerstrasse 21a
6020 Innsbruck, Austria
maria.schett@student.uibk.ac.at

ACM Student Memebership
Number: 7746806

Category: Master Student

Advisor. Georg C Moser
University of Innsbruck
Technikerstrasse 21a
6020 Innsbruck, Austria
georg.moser@uibk.ac.at

Student Research Competition @ POPL’16 , Jan 20–Jan 22, 2016,
St. Petersburg, Florida, United States

Problem & Motivation
Rewriting is the transformation of objects based on a set
of directed equations, namely rewrite rules. If these ob-
jects are terms, we talk about term rewriting—a Turing-
complete, yet simple, abstract model of computation [2, 9].
We rewrite:

→ with rule → (?1)

Inherent to terms is their tree structure and thereby rewrite
steps can cause an exponential blow-up in size. To avoid
this we move from trees to graphs and share equal sub-
terms:

→ with rule → (?2)

Now with the rule → in (?1) we can choose to rewrite
only the first argument:

→ but in (?2) we
rewrite in parallel

→ (?3)

We see that sharing influences the possible rewrite steps.
My research aims at understanding this influence. In par-
ticular I want to understand the influence of sharing on
termination, i.e., the absence of infinite rewrite sequences.



Background & Related Work
Term graph rewriting with explicit sharing and the reverse
operation—unsharing—can simulate term rewriting with
polynomial overhead and linear size growth [4, 1]. But
simulation requires unsharing which seems to annihilate the
advantage of the efficient graph representation. Thus [8]
investigates the rewriting relation with only an explicit shar-
ing operation. Unsurprisingly, every term graph rewrite step
can be simulated by n term rewrite steps (n > 1), but not
vice versa (?3). As a direct consequence we have that
termination of term rewriting implies termination of term
graph rewriting.

E.g., if we add the rule:
→

to (?1) and (?2),
we have termination for (?2) but not for (?1). I am in-
terested in this gap and want to find techniques to auto-
matically prove termination of term graph rewriting (in the
absence of termination of term rewriting). The only tech-
nique, to my knowledge, is developed by [7]. In my work I
follow that idea. I extend it by transferring the results to
the term graph rewriting formalism of [1] and re-proving
the result.

Approach & Uniqueness
Many methods that prove termination rely on finding a well-
founded order such that every rewrite step corresponds to
a decrease in this order, e.g., Knuth-Bendix order or some
recursive path orders. Proofs that these orders are well-
founded are usually based on Kruskal’s Tree Theorem [5]:
if we can find an order on the symbols in a tree, we can
extend this order to an order on trees. Following [7] our
symbols are tops. The top of a term graph is its root and its
direct successors—thus keeping information on how these
successors are shared.

E.g., in (?2) we could define the order on tops: > .
This sharing of successors gives us an additional way of

distinguishing symbols. Crucial here is the absence of un-
sharing. In [7] relies on an encoding of tops to symbols and
uses Kruskal’s tree theorem, but hints that there is a direct
proof based on [6]. This is the starting point for my work.

Results & Contributions
A first step is to prove Kruskal’s tree theorem directly for
term graphs to understand the effects of sharing for ter-
mination, and as future work also complexity bounds on
the amount of possible rewrite steps. This I achieve by
following the a minimal bad sequence argument of Nash-
Williams [6]: assuming the existence of a minimal “bad”
infinite sequence, an even smaller “bad” infinite sequence
is constructed contradicting minimality. The most impor-
tant insight from my proof concerns the arguments of a
term graph—or rather the argument. For a term structure
we have several sub-terms, i.e., sub-trees, as arguments.
For a term graph structure it is beneficial to regard the ar-
guments as only a single argument graph. This preserves
sharing. Moreover a single argument simplifies the proof
as extending the order to sequences, Higman’s Lemma [3],
can be omitted.

Graphs are ubiquitous in computer science. We find them
in flow graphs, heaps, modeling languages. . . Thus I believe
that working on the foundations of term graphs as well as
an automatic analysis of transformations, i.e., rewriting, is
vital.



References
[1] Avanzini, M. Verifying Polytime Computability Auto-

matically. PhD thesis, University of Innsbruck, 2013.
[2] Baader, F., and Nipkow, T. Term Rewriting and All

That. Cambridge Univ. Press, 1998.
[3] Higman, G. Ordering by Divisibility in Abstract Alge-

bras. Proc. of the London Mathematical Society 3, 2
(1952), 326–336.

[4] Kennaway, J. R., Klop, J. W., Sleep, M. R., and
de Vries, F. J. On The Adequacy Of Graph Rewriting
For Simulating Term Rewriting. ACM Trans. Program.
Lang. Syst. 16, 3 (1994), 493–523.

[5] Kruskal, J. B. Well-Quasi-Ordering, The Tree Theorem,

and Vazsonyi’s Conjecture. Transactions of the AMS
95, 2 (1960), 210–225.

[6] Nash-Williams, C. S. J. A. On Well-Quasi-Ordering
Finite Trees. Math. Proc. Cambridge Philosophical So-
ciety 59 (1963), 833–835.

[7] Plump, D. Simplification Orders for Term Graph
Rewriting. In Mathematical Foundations of Computer
Science (1997), 458–467.

[8] Plump, D. Handbook of Graph Grammars and Comput-
ing by Graph Transformation, vol. 2. World Scientific,
1999, ch. Term Graph Rewriting, 3–61.

[9] TeReSe, Ed. vol. 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.


	Problem & Motivation
	Background & Related Work
	Approach & Uniqueness
	Results & Contributions
	References

