

# From Trees to Graphs: On the Influence of Collapsing on Rewriting and on Termination

#### Maria A Schett

defensio: master thesis advised by Georg Moser department of CS @ UIBK Oktober 25, 2016

chair: Michael Felderer

n: Georg Moser & Sebastiaan Joosten

rewriting: replacing equals by equals with directed equations "⇒"

rules

tree  $\approx$  term





rewriting: replacing equals by equals with directed equations "⇒"

rules

tree  $\approx$  term





rewriting: replacing equals by equals with directed equations "⇒"







rewriting: replacing equals by equals with directed equations "⇒"





rewriting: replacing equals by equals with directed equations "⇒"



rewriting: replacing equals by equals with directed equations "⇒"



#### tree $\approx$ term





rewriting: replacing equals by equals with directed equations "⇒"



#### tree $\approx$ term





rewriting: replacing equals by equals with directed equations "⇒"



### ... changes the potential "⇒"-steps!





# Agenda

1 Termination

2 Collapsing

3 Literature

## 1 Termination

• not infinitely many " $\Rightarrow$ "-steps

not infinitely many "⇒"-steps

#### rules



#### tree $\approx$ term





not infinitely many "⇒"-steps

#### rules



#### tree $\approx$ term





not infinitely many "⇒"-steps

#### rules

Maria A Schett (defensio)



#### tree $\approx$ term















not infinitely many "⇒"-steps

termination graph

#### rules



#### $tree \approx term$















## **1** Termination

• Goal: design method to show termination of term graph rewriting<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>inspired by



D Plump. Simplification Orders for Term Graph Rewriting *Proc. Math. Found. of CS*, LNCS vol. 1295, pp. 458–467, 1997.

- Goal: design method to show termination of term graph rewriting<sup>1</sup>
- **Method:** find order  $>_{lpo}$  on term graphs



<sup>&</sup>lt;sup>1</sup>inspired by



D Plump. Simplification Orders for Term Graph Rewriting *Proc. Math. Found. of CS*, LNCS vol. 1295, pp. 458–467, 1997.

### **Termination**

- Goal: design method to show termination of term graph rewriting<sup>1</sup>
- **Method:** find order  $>_{lpo}$  on term graphs



Main ideas:



<sup>&</sup>lt;sup>1</sup>inspired by



D Plump. Simplification Orders for Term Graph Rewriting Proc. Math. Found. of CS, LNCS vol. 1295, pp. 458-467, 1997.

### **Termination**

- Goal: design method to show termination of term graph rewriting<sup>1</sup>
- **Method:** find order  $>_{lpo}$  on term graphs



Main ideas:





"Top"





<sup>&</sup>lt;sup>1</sup>inspired by



D Plump. Simplification Orders for Term Graph Rewriting Proc. Math. Found. of CS, LNCS vol. 1295, pp. 458-467, 1997.

- Goal: design method to show termination of term graph rewriting<sup>1</sup>
- **Method:** find order  $>_{lpo}$  on term graphs



<sup>&</sup>lt;sup>1</sup>inspired by



D Plump. Simplification Orders for Term Graph Rewriting *Proc. Math. Found. of CS*, LNCS vol. 1295, pp. 458–467, 1997.

- Goal: design method to show termination of term graph rewriting<sup>1</sup>
- **Method:** find order  $>_{lpo}$  on term graphs



<sup>&</sup>lt;sup>1</sup>inspired by



D Plump. Simplification Orders for Term Graph Rewriting *Proc. Math. Found. of CS*, LNCS vol. 1295, pp. 458–467, 1997.



### Procedure<sup>2</sup>

 $\bigcirc$  define embedding relation  $\sqsubseteq_{\mathsf{emb}}$  wrt. Top, Argument, and Left-of

**a** 2

G Moser, M A Schett. Kruskal's Tree Theorem for Acyclic Term Graphs *Proc. 9th TERMGRAPH*. 2016.



### Procedure<sup>2</sup>

- show Kruskal's Tree Theorem for term graphs

G Moser, M A Schett. Kruskal's Tree Theorem for Acyclic Term Graphs *Proc. 9th TERMGRAPH*, 2016.



#### Procedure<sup>2</sup>

- define embedding relation <sub>□emb</sub> wrt. Top, Argument, and Left-of
- show Kruskal's Tree Theorem for term graphs

wqo  $\sqsubseteq$  on Tops implies wqo  $\sqsubseteq_{emb}$  on term graphs

$$\stackrel{f}{\bullet} \sqsubseteq \stackrel{g}{\sqsubseteq} \sqsubseteq \stackrel{f}{\bullet} \sqsubseteq \dots \text{ implies } \stackrel{f}{\sqsubseteq} \sqsubseteq_{\mathsf{emb}} \stackrel{g}{\sqsubseteq} \sqsubseteq_{\mathsf{emb}} \dots$$







proof by minimal bad sequence argument

G Moser, M A Schett. Kruskal's Tree Theorem for Acyclic Term Graphs *Proc. 9th* TERMGRAPH, 2016.

## **Termination**

#### Procedure<sup>2</sup>

- define embedding relat for any infinite sequence hent, and Left-of
- ② show Kruskal's Tree  $\exists i < j \text{ s.t. } \triangle_i \sqsubseteq_{\text{emb}} \triangle_j \mid_{\mathbf{S}}$ wqo □ on Tops implies wqo □<sub>emb</sub> on term graphs

$$(\stackrel{f}{\bullet}) \sqsubseteq \stackrel{g}{\downarrow} \sqsubseteq \stackrel{f}{\downarrow} \sqsubseteq \dots \text{ implies}$$



proof by minimal bad sequence argument

G Moser, M A Schett. Kruskal's Tree Theorem for Acyclic Term Graphs Proc. 9th TERMGRAPH, 2016.

Maria A Schett (defensio)

## **Termination**

### Procedure<sup>2</sup>

- define embedding relation <sub>□emb</sub> wrt. Top, Argument, and Left-of
- show Kruskal's Tree Theorem for term graphs

wqo  $\sqsubseteq$  on Tops implies wqo  $\sqsubseteq_{emb}$  on term graphs

$$\stackrel{f}{\downarrow} \sqsubseteq \stackrel{g}{\downarrow} \sqsubseteq \stackrel{f}{\downarrow} \sqsubseteq \dots \text{ implies } \stackrel{f}{\downarrow} \sqsubseteq_{\mathsf{emb}} \stackrel{g}{\downarrow} \sqsubseteq_{\mathsf{emb}} \dots$$







proof by minimal bad sequence argument

- $\bigcirc$  if  $\sqsubseteq_{\mathsf{emb}} \subseteq <_{\mathsf{lpo}}$ then not  $\infty$ -many " $\Rightarrow$ "-steps thus **termination**

G Moser, M A Schett. Kruskal's Tree Theorem for Acyclic Term Graphs Proc. 9th TERMGRAPH, 2016.

#### Procedure<sup>2</sup>

- $_{ ext{1}}$  define embedding relation  $\sqsubseteq_{\mathsf{emb}}$  wrt. Top, Argument, and Left-of
- ② show Kruskal's Tree Theorem for term graphs

wqo  $\sqsubseteq$  on Tops implies wqo  $\sqsubseteq_{emb}$  on term graphs



③ if  $\sqsubseteq_{\mathsf{emb}} \subseteq <_{\mathsf{lpo}}$  then not ∞-many "⇒"-steps thus **termination** 



G Moser, M A Schett. Kruskal's Tree Theorem for Acyclic Term Graphs *Proc. 9th TERMGRAPH*. 2016.

### Agenda

**2** Collapsing

## 2 Collapsing

explicitly share equal sub-graphs "collapsing"

• explicitly share equal sub-graphs "collapsing"





• explicitly share equal sub-graphs "collapsing"





• explicitly share equal sub-graphs "collapsing"





## **Collapsing**

• explicitly share equal sub-graphs "collapsing"













### **Collapsing**

• explicitly share equal sub-graphs "collapsing"























explicitly share equal sub-graphs "coll

How to combine  $\Rightarrow$  &  $\succcurlyeq$  or  $\succ$  or  $\succ$ !?























- combination through concatenation or union
- comparison wrt. single steps and normal forms

- combination through concatenation or union
- comparison wrt. single steps and normal forms



## Collapsing

- combination through concatenation or union
- comparison wrt. single steps and normal forms

$$\Rightarrow \cdot \succcurlyeq / \succcurlyeq \cdot \Rightarrow \quad \Rightarrow \cdot \succ^! / \succ^! \cdot \Rightarrow \quad \Rightarrow \cup \succ \quad \Rightarrow \cup \succ^!$$

|   |   | $\Rightarrow$                                                                                         |
|---|---|-------------------------------------------------------------------------------------------------------|
|   | * | $\Rightarrow \cdot \not>/\not> \cdot \Rightarrow$ $\Rightarrow \cdot \not>!/\not>! \cdot \Rightarrow$ |
| · |   | $\Rightarrow \cdot \succ^! / \succ^! \cdot \Rightarrow$                                               |
|   |   | $\Rightarrow \cup \succ$                                                                              |



$$\Rightarrow \cup \succ$$







# Collapsing

- combination through concatenation or union
- comparison wrt. single steps and normal forms

$$\Rightarrow \cdot \succcurlyeq / \succcurlyeq \cdot \Rightarrow \quad \Rightarrow \cdot \succ^! / \succ^! \cdot \Rightarrow \quad \Rightarrow \cup \succ \quad \Rightarrow \cup \succ^!$$

|  |   | $\Rightarrow$                                                                                                                              |
|--|---|--------------------------------------------------------------------------------------------------------------------------------------------|
|  | * | $\begin{vmatrix} \Rightarrow \cdot \not> / \not> \cdot \Rightarrow \\ \Rightarrow \cdot \not>^! / \not>^! \cdot \Rightarrow \end{vmatrix}$ |
|  |   | $\Rightarrow \cdot \succ^! / \succ^! \cdot \Rightarrow$                                                                                    |
|  |   | $\Rightarrow \cup \succ$                                                                                                                   |









$$(\Rightarrow \cup \succ)^{O(n^2)} = \succcurlyeq \cdot (\Rightarrow \cdot \succcurlyeq)^n$$

- combination through concatenation or union
- comparison wrt. single steps and normal forms

$$\Rightarrow \cdot \not \succ / \not \succ \cdot \Rightarrow \Rightarrow \cdot \not \succ ! / \not \succ ! \cdot \Rightarrow \Rightarrow \cup \not \succ \Rightarrow \cup \not \succ !$$

$$\Rightarrow \Rightarrow \cdot \not \succ / \not \succ \cdot \Rightarrow \Rightarrow \cdot \not \succ ! / \not \succ ! \cdot \Rightarrow \Rightarrow \cup \not \succ \Rightarrow \cup \not \succ$$

$$(\Rightarrow \cup \succ^!)^{O(n^2)} \supsetneq \succ^! \cdot (\Rightarrow \cdot \succ^!)^n$$

- combination through concatenation or union
- comparison wrt. single steps and normal forms

$$\Rightarrow \cdot \not \succ / \not \succ \cdot \Rightarrow \quad \Rightarrow \cdot \not \succ^! / \not \succ^! \cdot \Rightarrow \quad \Rightarrow \cup \not \succ \quad \Rightarrow \cup \not \succ^!$$











$$(\Rightarrow \cup \succ^!)^{O(n^2)} \supseteq \succ^! \cdot (\Rightarrow \cdot \succ^!)^n$$

- combination through concatenation or union
- comparison wrt. single steps and normal forms



### Agenda



**Different Representations** and  $\Rightarrow$  or  $\Rightarrow \cup \succ$  or ...



#### **Termination**

- relation to term rewriting
- application: natural language processing
- tools GREZ and GREW

**Different Representations** and  $\Rightarrow$  or  $\Rightarrow \cup \succ$  or ...



#### Termination Confluence

• relation to term rewriting



**Different Representations** and  $\Rightarrow$  or  $\Rightarrow \cup \succ$  or ...



Termination Confluence Modularity

- relation to term rewriting
- ... subtle but severe differences!
- e.g., confluence not preserved under signature extension

**Different Representations** and  $\Rightarrow$  or  $\Rightarrow \cup \succ$  or ...



Termination Confluence Modularity Sharing & Memoisation

- not the same, although sharing may save computation
- approach which also incorporates memoisation

### Summary

① Termination.



2 Collapsing.

 $\mathsf{e.g.} \Rightarrow \cdot \succcurlyeq \mathsf{vs} \Rightarrow \cup \succ$ 

3 Literature.

#### Summary

① Termination.



- Collapsing.
- e.g.  $\Rightarrow \cdot \succ \mathsf{vs} \Rightarrow \cup \succ$

3 Literature.

#### **Impact**

- G Moser, M A Schett. Kruskal's Tree Theorem for Acyclic Term Graphs *Proc. 9th TERMGRAPH*, 2016.
  - ACM student research competition at POPL 2016, Florida won 3rd place graduate category
  - presented at OPLSS 2016 in Oregon, and LC&A 2016 in Obergurgl

#### Summary

① Termination.



2 Collapsing.

e.g. 
$$\Rightarrow \cdot \succ \mathsf{vs} \Rightarrow \cup \succ$$

### Thank you for your attention!

### **Impact**

- G Moser, M A Schett. Kruskal's Tree Theorem for Acyclic Term Graphs *Proc. 9th TERMGRAPH*, 2016.
- ACM student research competition at POPL 2016, Florida won 3rd place graduate category
- presented at OPLSS 2016 in Oregon, and LC&A 2016 in Obergurgl

#### Summary

① Termination.



- Collapsing.
- e.g.  $\Rightarrow \cdot \succ \mathsf{vs} \Rightarrow \cup \succ$

3 Literature.

#### **Impact**

- G Moser, M A Schett. Kruskal's Tree Theorem for Acyclic Term Graphs *Proc. 9th TERMGRAPH*, 2016.
  - ACM student research competition at POPL 2016, Florida won 3rd place graduate category
  - presented at OPLSS 2016 in Oregon, and LC&A 2016 in Obergurgl