
master thesis in computer science

by

Maria A Schett

submitted to the Faculty of Mathematics, Computer
Science and Physics of the University of Innsbruck

in partial fulfillment of the requirements
for the degree of Master of Science

supervisor: Assoc. Prof. Dr. Georg Moser,
Department of Computer Science

Innsbruck, 1 October 2016

Master Thesis

From Trees to Graphs: On the Influence of
Collapsing on Rewriting and on Termination

Maria A Schett (0716526)
maria.schett@student.uibk.ac.at

1 October 2016

Supervisor: Assoc. Prof. Dr. Georg Moser

mailto:maria.schett@student.uibk.ac.at

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt durch meine eigenhändige Unterschrift, dass ich die
vorliegende Arbeit selbständig verfasst und keine anderen als die angegebenen Quellen
und Hilfsmittel verwendet habe. Alle Stellen, die wörtlich oder inhaltlich den angegebenen
Quellen entnommen wurden, sind als solche kenntlich gemacht.
Die vorliegende Arbeit wurde bisher in gleicher oder ähnlicher Form noch nicht als
Magister-/Master-/Diplomarbeit/Dissertation eingereicht.

Datum Unterschrift

Abstract

When moving from the tree representation of terms to the graph representation of term
graphs, we change the potential rewrite steps: every graph rewrite step can be simulated
by one or more term rewrite steps—but not vice versa. In this work we are interested
in the effects of collapsing equal sub-terms/graphs on the rewrite relation. Therefore
we first comprehensively compare combinations of different collapsing relations with the
rewrite relation. We conduct this comparison with respect to simulation of steps and
normal forms. Next we study the effect of collapsing on termination. A straight-forward
consequence of simulation is that infinitely many term graph rewrite steps imply infinitely
many term rewrite steps—but again not vice versa. Hence sometimes term graph rewriting
terminates, where term rewriting does not. We are interested in this gap and developed
a termination technique to show termination for term graph rewriting: a lexicographic
path order which we proved well-founded by adapting Kruskal’s Tree Theorem for term
graphs.

Acknowledgments

First and foremost I want to thank my advisor Georg Moser for his support throughout
my master’s programme and this thesis. I also want to thank my all colleagues at the
CBR and CL research group. Last but not least my thanks go to my family, and of
course, Julian.

iv

Contents

1 Introduction 1

2 Preliminaries 4
2.1 Sets, Relations, Orders, and Functions . 4
2.2 Term Rewriting . 6

3 Term Graph Rewriting 9
3.1 Term Graphs . 9
3.2 Term Graph Rewriting . 14
3.3 From Terms to Term Graphs and Back Again 18

4 Collapsing and Rewriting 20
4.1 Adequacy . 20
4.2 Combine Rewriting and Collapsing . 22
4.3 Concatenating Collapse . 24
4.4 Union Collapse . 28
4.5 Between Concatenation and Union . 29

5 Kruskal’s Tree Theorem for Term Graphs 34
5.1 The Argument of a Term Graph . 38
5.2 Embedding . 40
5.3 Proof . 47

6 Termination of Term Graph Rewriting 49
6.1 Lexicographic Path Order . 49
6.2 Non-Termination . 53

7 Related Work 56
7.1 Representations of Term Graphs . 56
7.2 Termination . 59
7.3 Confluence . 60
7.4 Modularity . 62
7.5 Shared Nodes and Memoisation . 63

8 Conclusion 64
8.1 On Collapsing . 64
8.2 On Termination . 66
8.3 On Literature . 67

v

Bibliography 68

Index 71

1 Introduction

Rewriting is the transformation of objects based on a set of directed equations, namely
rewrite rules. If these objects are terms, we talk of term rewriting—a Turing-complete,
yet simple, abstract model of computation [6, 34]. We rewrite:

⇒ with the rule ⇒ (?1).

Inherent to terms is their tree structure. As in the step above, a sub-term can get
duplicated by a rewrite step. Thereby rewrite steps can cause an exponential blow-up
in size—even when this is not necessary. To avoid this unnecessary blow-up we move
from the tree structure of terms to a graph structure: term graphs. Term graphs allow
to share equal sub-graphs. When sharing the sub-graph in the above rule and step,
we rewrite:

⇒ with the rule ⇒ (?2).

But not only can we share equal sub-graphs through a rewrite step—we can also add an
explicit collapsing relation:

< .

To apply a rule sometimes we need collapsing to find the exact pattern of the rule in a
term graph. Consider for example the following:

does not match the rule ⇒ .

But if we collapse first we can find exactly the same structure and can apply the rule:

< ⇒ with the rule ⇒ .

This raises several questions: How to sensibly combine these two relations: ⇒ and <?
Through union like ⇒∪< or through concatenation like ⇒ ·<? Do we first collapse and
then rewrite or the other way around? Do we always collapse as much as possible? And

1

what are the consequences of each of these decisions? To find answers to these questions
is the first part of this thesis: to investigate the influence of collapsing on the rewrite
relation.

We can easily see that sharing equal sub-graphs influences the potential rewrite steps.
In (?1) we can choose to rewrite only the first argument:

⇒ with the rule ⇒ (?3).

But if we try to simulate this in (?2) we rewrite in parallel.

⇒ with the rule ⇒ (?4).

Term graph rewriting with collapsing and the reverse operation can simulate term
rewriting with polynomial overhead and linear size growth [18, 2]. But simulation
requires uncollapsing, which seems to annihilate the advantage of the efficient graph
representation. Thus our aim is to investigate term graph rewriting with collapsing only.
Unsurprisingly every term graph rewrite step can be simulated by n term rewrite steps
but not vice versa.

As a direct consequence infinitely many term rewrite steps imply infinitely many graph
rewrite steps, but again not vice versa. Hence we may have only finitely many rewrite
steps, that is termination for term graphs, where we have infinitely many for terms.
Suppose we add the following rule to (?3) and (?4):

⇒ .

Now an infinite number of rewrite steps is possible combining (?1) and (?3):

⇒ ⇒ ⇒ ⇒ . . .

But we cannot apply the same rule in (?4). Hence, we have termination for term graphs
in (?2) but not for terms in (?1). We are interested in this gap and want to find techniques
to prove termination of term graph rewriting—in the absence of termination of term
rewriting. This is the second part of this thesis: finding a termination technique directly
for term graph rewriting.

After this introduction in Chapter 1, this thesis is structured as follows: In Chapter 2
are the preliminaries, where we fix notations for sets, relations, orders, and functions in
Section 2.1, and give a brief introduction to term rewriting in Section 2.2. In Chapter 3
we present term graph rewriting by first introducing the underlying data structure in
Section 3.1, then rewriting in Section 3.2, and in the final Section 3.3 we investigate the

2

transfer between the term graph rewriting and the term rewriting setting. In Chapter 4
we combine the term graph rewrite relation with collapsing in different variations. In
Section 4.1 we start with presenting results on why collapsing and its inverse are needed
to simulate term rewriting. Then we drop the requirement of simulation and compare
different combinations with respect to one-step-simulation and normal forms. We have
three blocks, which we present in Section 4.2: in Section 4.3 we compare the combinations
of the term graph rewrite relation and the collapsing relation through concatenation, in
Section 4.4 through union, and in Section 4.5 we compare them with each other. The
next Chapter 5 presents our results on Kruskal’s Tree Theorem for term graphs, where
we present our motivation and notion of argument graph in Section 5.1, develop our
notion of embedding in Section 5.2, and give the proof in Section 5.3. In Chapter 6 we
use the result of the previous chapter to present a termination order, more specifically
a simplification order, in Section 6.1. In Section 6.2 we give some straight-forward
non-termination results. In Chapter 7 we give an overview over the term graph rewriting
literature. We presents different representations of term graphs in Section 7.1, results
on termination in Section 7.2, confluence in Section 7.3, modularity in Section 7.4, and
discuss the difference between collapsing and memoisation in Section 7.5. We conclude
the thesis in Chapter 8 with a conclusion on the combination between collapsing and
rewriting in Section 8.1, a conclusion on our results on termination in Section 8.2, and a
conclusion on the term graph rewriting literature in Section 8.3.

3

2 Preliminaries

The goal of this chapter is to introduce and fix notation. In Section 2.1 we define sets,
relations, orders, and functions, and in Section 2.2 we introduce term rewriting.

2.1 Sets, Relations, Orders, and Functions
Let A and B be sets, and let ∅ denote the empty set. With |A| we denote the cardinality
of A. We write A \ B for set difference, A ∩ B for intersection, A ∪ B for union, A × B
for the cartesian product, A ⊆ B for the sub-set relation, A (B if A ⊆ B and A 6= B,
AB for set concatenation, and P(A) for the power set of A. The set A∗ is defined as
{a0 · a1 · · · an | n > 0 and ai ∈ A, 1 6 i 6 n} and A+ = AA∗.

Next we define some standard notions on binary relations. We write . for an arbitrary
binary relation, and define reflexivity, irreflexivity, symmetry, anti- and asymmetry, and
transitivity.

Definition 2.1. A binary relation . over a set A is called

• reflexive if a . a holds for all a ∈ A,

• irreflexive if a . a holds for no a ∈ A,

• symmetric if a . b implies b . a for all a, b ∈ A,

• anti-symmetric if a . b and b . a implies a = b for all a, b ∈ A,

• asymmetric if a . b implies b �. a for all a, b ∈ A,

• transitive if a . b and b . c implies a . c for all a, b, c ∈ A.

We write .= for the reflexive closure, and .+ for the transitive closure of .. The
transitive and reflexive closure of . is denoted by .∗. Next we are interested in . with
respect to its normal forms.

Definition 2.2. An element a is in normal form with respect to . if there is no element b
with a . b. We write a .! b, if a .∗ b and b is in normal form. The set of normal forms for
a relation . is denoted by NF(.).

A binary relation can be strongly or weakly normalising, have unique normal forms,
can be confluent, complete or semi-complete.

Definition 2.3. We say a binary relation . over A

4

2.1 Sets, Relations, Orders, and Functions

• is strongly normalising, well-founded, or terminating if there are no infinite sequences
a1 . a2 . a3 . . . with ai ∈ A for i > 1.

• is weakly normalising if for each element a there is a b such that a .! b.

• has unique normal forms, if for all elements a where a .! b and a .! c, b = c holds.

• is confluent, if for elements a1, a2, and a3 with a1 .
∗ a2 and a1 .

∗ a3 there exists
an element a4 such that a2 .

∗ a4 and a3 .
∗ a4.

• is semi-complete if it is weakly normalising and confluent.

• is complete if it is strongly normalising and confluent.
Based on binary relations we can define some standard notions on orders. We look at

the definition of pre-order, partial order, and proper order.
Definition 2.4. Let A be a set.
• A pre-order is a reflexive, and transitive binary relation over A.

• A partial order on A is a reflexive, anti-symmetric, and transitive relation.

• A proper order on A is an irreflexive, and transitive binary relation over A.
We next look at the concept of good and bad sequences and define well-quasi orders

and chains.
Definition 2.5. Let 4 be a pre-order on a set A. An infinite sequence a over A is called
good, if there are indices i, j with 1 6 i < j such that ai 4 aj . Otherwise a is called bad.
If every infinite sequence is good, 4 is a well-quasi order (wqo). An infinite sequence a is
a chain if ai 4 ai+1 holds for all i > 1.

We can find a chain in every infinite sequence, as stated by the following lemma and
shown in the proof.
Lemma 2.6. If 4 is a wqo then every infinite sequence contains a chain.
Proof. We follow the proof in [22]. Let a be an infinite sequence. By assumption, and
definition of wqo, every infinite sequence is good. If for a sub-sequence with elements ai
we cannot find ai 4 aj for j > i, this sub-sequence is bad. If this sub-sequence is also
infinite, this contradicts the assumption. Hence this sub-sequence is finite and we can
find an index N > 1 such that for all i > N we can find ai 4 aj for j > i. We construct
a chain aφ where φ(1) := N and φ(i) := min{j | j > φ(i− 1) and aφ(i−1) < aj}.

Finally we consider functions. Let f : A→ B be a function from a set A to a set B.
We call A the domain, denoted by dom(f), and B the co-domain, of f . We write f |A′
for restricting dom(f) to A′ ⊆ A. The inverse of f is denoted by f−1 : B → A.
Definition 2.7. For functions f : A → B and g : B → C we write g ◦ f : A → C for
function composition, where g ◦ f(x) = g(f(x)).

This concludes the first part of the preliminaries. In the next section we introduce a
simple, yet Turing-complete model of computation: term rewriting.

5

2.2 Term Rewriting

2.2 Term Rewriting
Term rewriting has its roots in equational reasoning. We reason by replacing equal terms
by equal terms following directed equations, namely rewrite rules. Applying such a
rewrite rule is a purely syntactical manipulation. This makes term rewriting an easy to
understand model of computation close to first-order functional programming.

This section gives only a brief introduction to term rewriting. For a detailed introduction
the kind reader is referred to [6], [34], or [22]. The notation is based on [22].

Definition 2.8. Let F be a finite set of function symbols, a signature, where every
f ∈ F has an associated arity ar(f) ∈ N. Let V be a (countably infinite) set of variables
disjoint from F . Then T (F ,V) denotes the set of terms over F and V.

We usually write x, y, z . . . for variables. For function symbols we write f, g, h . . ., but
when ar(f) = 0, then f is called a constant and we denote constants by a, b, c . . . In
Var(t) we collect all variables of a term t. If Var(t) = ∅, then t is ground, and we write
t ∈ T (F).

Example 2.9. Given a signature F = {f, g, h, a} with ar(f) = 2, ar(g) = ar(h) = 1, and
a constant a. Then we have the following terms in T (F ,V):

f(x, x) , f(g(a), g(a)) , x , h(f(g(a), a)) , . . .

The set of positions of a term t is a sequence of natural numbers and is defined
recursively by

Pos(t) :=
{
{ε} if t ∈ V
{ε} ∪ {i · p | p ∈ Pos(ti) for 1 6 i 6 k} if t = f(t1, . . . , tk) .

Here, · denotes concatenation of sequences. The size of a term, denoted by |t|, is
defined as |Pos(t)|. The sub-term at position p of a term t is defined as

t|p :=
{
t if p = ε

ti|q if t = f(t1, . . . , tk) and p = i · q .

The set of sub-terms of a term t is defined as {t|p | p ∈ Pos(t)}. The root of a term t,
rt(t), is the symbol at position ε.

Definition 2.10. Let ` and r be terms. A rewrite rule is a pair `→ r such that

1. ` 6∈ V, and

2. Var(r) ⊆ Var(`).

We call ` the left-hand side (lhs) and r the right-hand side (rhs) of the rule. A term
rewrite system (TRS) R is a set of rewrite rules.

6

2.2 Term Rewriting

A term t is linear if every variable x ∈ V occurs at most once in t. A TRS is left-linear
(right-linear), if the lhs (rhs) of every rule is linear.

To apply a rewrite rule to a term we need the concept of substitution and context.
A substitution is a mapping σ : V → T (F ,V) such that for finitely many x, σ(x) 6= x
holds. This extends to a term t in the obvious way and is written as tσ. Let � be a fresh
constant symbol, i.e. � 6∈ F . A term C ∈ T (F ∪ {�},V) is a context, if � occurs exactly
once in C. Let C[t]p be the term obtained by replacing � at position p in C by term t.

Definition 2.11. A term s rewrites to a term t, denoted as s →R t, if there is a rule
`→ r ∈ R, a substitution σ, and a context C such that s = C[`σ]p and t = C[rσ]p.

Example 2.12. Given a rule f(g(x))→ g(x) ∈ R and a term h(f(g(a), a)). Then

h(f(g(a), a))→R h(g(a), a) .

Here the substitution is σ : x 7→ a, and the context is C = h(�, a).

Note that →R is a binary relation over T (F ,V). If →R is terminating, we say that
R is terminating. We say a binary relation . over terms is closed under context, if for
all contexts C, s . t implies C[s] . C[t]. Further, . is closed under substitution if for all
substitutions σ, s . t implies sσ . tσ. By definition →R is closed under substitution and
context.

Definition 2.13. A proper order � is a rewrite order if � is closed under context and
substitution. A reduction order is a well-founded rewrite order.

Let � be an reduction order on T (F ,V). We say � is compatible with R if s � t
whenever s →R t, i.e. →R ⊆ �. We define a lexicographic path order on terms as e.g.
in [13]. We call a proper order > on F a precedence.

Definition 2.14. Let s and t be terms and > a precedence on F . Then s >lpo t for
s = f(s1, . . . , sn) if one of the following holds

1. si >lpo t for 1 6 i 6 n,

2. t = g(t1, . . . , tm), g < f , and s >lpo ti for 1 6 i 6 m,

3. t = f(t1, . . . , tn), and for some 1 6 i 6 n for all 1 6 j < i, sj = tj , and si >lpo ti,
and s >lpo tk for all i < k 6 n.

Example 2.15. Given a precedence f > g > a > b. Then f(x, y) >lpo x, f(x, y) >lpo g(x),
and f(a, a) >lpo f(a, b).

A TRS R is terminating if ` >lpo r for all `→ r ∈ R. Put differently, if the rules in a
rewrite system are compatible with >lpo, there are no infinite rewrite sequences. This
statement can be proved by defining an embedding relation vemb on terms, and showing
Aemb ⊆ >lpo. If Aemb ⊆ >lpo, >lpo is a simplification order [21]. Well-foundedness of the
vemb, and all simplification orders, can be shown by Kruskal’s Tree theorem [19]. We
define embedding of terms as follows.

7

2.2 Term Rewriting

Definition 2.16. Let s, t be terms and 6 a proper order on F . A term t is embedded
in a term s, denoted by s wemb t, if for s = f(s1, . . . , sn) one of the following holds

1. si wemb t for 1 6 i 6 m, or

2. for t = g(t1, . . . , tm), g 6 f , we have si1 wemb t1, si2 wemb t2, · · · , sim wemb tm
where 1 6 i1 < i2 < · · · < im 6 n.

With this we conclude the preliminaries. In the next chapter we move from the tree
structure of terms to a graph structure and introduce term graphs.

8

3 Term Graph Rewriting
Term graph rewriting comes in many different flavours. Some differences are subtle.
For example, nodes representing variables may have labels like x, y, and z, e.g. [5], or
the label of any variable node is ⊥, e.g. [7, 8]. Some differences are not so subtle. For
example, some formalisms allow for cycles and hence infinite structures, e.g. [7, 8, 18]
and some do not, e.g. [28, 2]. These different flavours are presented in Chapter 7.

In this thesis, we chose the term graph rewriting formalism defined in [2, 4, 5], which
is very close to term rewriting. In fact, it is shown to be adequate to simulate term
rewriting [2]—provided we have an appropriate mechanism to collapse and uncollapse
sub-graphs. Thus it is quite intuitive from the background of term rewriting. Finally
these works have clear and well developed definitions.

In Section 3.1 we introduce term graphs and operations on them. Then in Section 3.2
we define term graph rewriting. Finally in Section 3.3 we transfer from term graph
rewriting to term rewriting and back again.

3.1 Term Graphs
The definition of term graphs is based on directed and ordered graphs.

Definition 3.1. Let N be a countable infinite set of nodes. A directed and ordered graph
G over a set of labels L is a triple G = (NG, succG, labG), where NG ⊆ N and NG is
finite, succG : NG → [NG, . . . , NG] is a mapping from a node to an ordered sequence of
successors, and labG is a mapping NG → L.

We call a directed and ordered graph simply graph. In the following, graphs will be
denoted by G and H. Nodes in a graph will usually be n, or u and v, and we write
n ∈ G instead of n ∈ NG. Subscripts are dropped where the context is clear. By default,
N = N, but we may use roman numerals or (Greek) letters on occasion. Still we usually
refer to elements of N as node numbers.

Example 3.2. In examples we will draw graphs as depicted below. Shown is the graph
G = ({ 1 , 2 }, succG, labG), where succG : 1 7→ [2 , 2], 2 7→ [], and lab : 1 7→ f, 2 7→ x.
As can be seen in the right graph, we omit node numbers when convenient:

f : 1G :

x : 2

or simply
f

x
.

The next definition introduces some standard notions on graphs, i.e. size, successors,
paths, roots, and acyclicicity.

9

3.1 Term Graphs

Definition 3.3. Let G = (NG, succG, labG) be a graph.

• The size of G is defined, and denoted, as |G| := |NG|.

• Suppose for some node n ∈ G we have succG(n) = [n1, . . . , ni, . . . , nk]. Then ni is
the ith successor of n denoted by succiG(n) = ni, or, n i

⇀G ni. We write n ⇀G ni,
when n

i
⇀G ni for some i. We also say there is an edge from n to ni.

• For a non-empty sequence n1, . . . , nk+1 ∈ G with n1 ⇀G · · · ⇀G nk+1 we have a
path of length k. We also say, nk+1 is reachable from n1.

• For n1 ⇀∗S n2 we say that n1 is above n2, or, alternatively n2 is below n1. If
n1 ⇀

+
S n2, then n1 is strictly above of n2, or n2 is strictly below of n1.

• Two nodes n1, n2 are parallel if neither n1 ⇀
∗
G n2 nor n2 ⇀

∗
G n1.

• The graph G is rooted, if there exists a unique node, the root of G, denoted by
rt(G), such that for all nodes n ∈ G, rt(G) ⇀∗ n holds.

• A graph G is acyclic, if n1 ⇀
+ n2 implies n1 6= n2 for all nodes n1, n2 ∈ G.

Example 3.4. In Example 3.2 the size of G is |G| = 2, the successors are 1
1
⇀ 2 and

1
2
⇀ 2 , and the root of G is rt(G) = 1 . Also, G is acyclic.

Next we will introduce some basic operations on directed and ordered graphs: the
sub-graph operation, the union of two graphs, and the redirection of edges.

Definition 3.5. The sub-graph of a graph G = (NG, succG, labG) reachable from a node
n ∈ G is defined as G′ = (NG′ , succG′ , labG′), where NG′ = {n′ | n ⇀∗G n′} and the
domains of succG′ and labG′ are restricted to NG′ . We write G′ = G�n.

In the next definition we will consider the union of two graphs.

Definition 3.6. For two graphs G and H, their (left-biased) union, denoted by G⊕H,
is defined as (NG ∪NH , succG ⊕ succH , labG ⊕ labH), where for f ∈ {succ, lab} we define

fG ⊕ fH(n) :=
{
fG(n) if n ∈ G
fH(n) if n 6∈ G and n ∈ H.

Note, that we do not require NG ∩NH = ∅. In particular for a node n where n ∈ G
and n ∈ H we favour the graph G, hence the union is left-biased.

The next definition allows the redirection of all in-coming edges of a node to another
node in the graph.

Definition 3.7. Let u, v be two distinct nodes in G. By G[v ← u] we redirect edges
pointing at u to v. That is, G[v ← u] = (NG, succG[v←u], labG), where for all nodes n ∈ G

succiG[v←u](n) :=
{
v if n = u

n otherwise.

10

3.1 Term Graphs

Note, that for G[v ← u] we still have u ∈ G. The introduced definitions and operations
so far work on directed and ordered graphs. There are no restrictions with respect to
cycles and roots yet.

Definition 3.8. Let G be a directed, ordered, acyclic graph, i.e. a dag. Then G is a
term dag over a signature F and variables V when

• the set of labels L is F ∪ V,

• for a node n ∈ G with labG(n) = f ∈ F and ar(f) = k exist n1, . . . , nk ∈ G such
that succG(n) = [n1, . . . , nk],

• for every n ∈ G with labG(n) ∈ V, succG(n) = [] holds.

A term dag G is a term graph if it is rooted. We collect all term graphs over F and V in
T G(F ,V).

Example 3.9. The graph in Example 3.2 is a term graph.

In [4, 5] it is additionally required that all variable nodes with the same label are
represented by the same node. Formally that is, for all n1 ∈ G with labG(n1) = x ∈ V,
if labG(n2) = x then n1 = n2. We drop this requirement here, as in the later [2]—as
distinguishing between nodes representing variables and nodes representing function
symbols is not necessary for a term graph. It will be important for graph rewrite rules
though.

The set of variable nodes in a term dag G is denoted by Var(G) ⊆ NG. Let f ∈ F ∪ V .
If for a node n, lab(n) = f , then n is called a f-node. In the following S and T denote
term graphs.

Finally we consider the essential benefit of the graph representation: The possibility
to share equal sub-graphs by identifying them by a single node.

Example 3.10. The three term graphs below employ different degrees of sharing.

f

g g

a a

shares fewer nodes then

f

g g

a

shares fewer nodes then

f

g

a

.

We define shared nodes based on the notion of positions.

Definition 3.11. The set of positions of a node u ∈ S is defined as follows:

PosS(u) :=

{ε} if u = rt(S)
{p · i | ∃v ∈ S with v

i
⇀S u and p ∈ PosS(v)} otherwise.

Then we can determine for a node if it is shared or unshared by the set of its positions.

11

3.1 Term Graphs

Definition 3.12. A node n ∈ S is shared, if PosS(n) is not a singleton. Otherwise n is
unshared.

Positions are also interesting because they give rise to a canonical representation of
term graphs. For a canonical representation each node in the term graph is referenced by
the set of its positions.

Definition 3.13. For a term graph T its canonical representation is C = (NC , succC , labC),
whereNC = {PosT (n) | n ∈ T}, labC(PosT (n)) = labT (n), and for succC(n) = [n1, . . . , nk]
we have succC(PosT (n)) = [Pos(n1), . . . ,Pos(nk)].

Example 3.14. Recall the graphs from Example 3.10. Their canonical representations
are shown below:

f : {ε}

g : {1} g : {2}

a : {1 · 1} a : {2 · 1}

,

f : {ε}

g : {1} g : {2}

a : {1 · 1, 2 · 1}

,

f : {ε}

g : {1, 2}

a : {1 · 1, 2 · 1}

.

We next demonstrate a way to compute nodes, which can be shared. To find a common
structure between two graphs consider the following definition of morphism.

Definition 3.15. Let S and T be term graphs, and ∆ ⊆ F ∪ V. A function m : S → T
is morphic if for a node n ∈ S

1. labS(n) = labT (m(n)), and

2. if n i
⇀S ni then m(n) i

⇀T m(ni) for all appropriate i.

A ∆-morphism from S to T is a mapping m : S →∆ T , which is morphic in all nodes
n ∈ S with lab(n) 6∈ ∆, where additionally m(rt(S)) = rt(T) holds.

This definition of ∆-morphism allows to detect sub-graphs that can be shared. Later on
a morphism will also indicate, when a rule matches. But first we consider the definition
of collapsing. As an intuition: we set the set ∆ to ∅ and thereby capture all nodes.

Definition 3.16. Let S and T be term graphs with a morphism m : S →∅ T . Then S
collapses to T denoted by S <m T . If S <m T and T <m S, then S is isomorphic to T ,
denoted by S ∼=m T . If S <m T and S 6∼=m T , the relation is strict and we write S �m T .

We usually drop m if it is clear from context. That is we write S < T if S <m T for
some m : S →∅ T . In the remainder of this thesis we distinguish between collapsing and
shared nodes and sub-graphs. We talk of collapsing when we mean an explicit operation,
which results in a term graph that may contain more shared nodes. Shared nodes and
sub-graphs describe a state or a property.

12

3.1 Term Graphs

Example 3.17. Recall the term graphs in Example 3.10. Below we can see the underlying
morphisms m1 and m2 indicated by dashed lines.

f : 1

g : 2 g : 3

a : 4 a : 5

<m1

f : a

g : b g : c

a : d

<m2

f : α

g : β

a : γ

.

For m1 we have 1 7→ a , 2 7→ b , 3 7→ c , 4 7→ d , and 5 7→ d . For m2 we have
a 7→ α , b 7→ β , c 7→ β , and d 7→ γ .

Our notion of ∆-morphism is similar to the concept of bisimilar graphs. Two graphs
are bisimilar, if they are indistinguishable with respect to their symbol structure. That
is, each path from the root in one graph corresponds to a path in the other graph with
the same sequence of labels. Ariola et al [1] and Barendsen [8] give the formal definition:

Definition 3.18. Given two term graphs S and T with nS ∈ S and nT ∈ T , and a
relation .⊆ NS ×NT . Then S and T are bisimilar if

• nS . nT ,

• nS . nT implies lab(nS) = lab(nT) and for appropriate i, succi(nS) . succi(nT).

If . is a function, then . is a homomorphism.

Comparing with our definition of collapsing and isomorphism in Chapter 3 both
relations are a bisimulation for ground term graphs.

We investigate collapsing a bit further and show that � defines a proper order and ∼=
an equivalence on T G(F ,V).

Lemma 3.19. The relation < is a pre-order on T G(F ,V).

Proof. We follow the proof in [2, Lemma 4.16]. By the identity morphism S →∅ S, < is
reflexive. For transitivity assume S <m1 T and T <m2 U , we then set m = m1 ◦m2 and
observe that both conditions in Definition 3.15 hold, showing S <m U .

If all equal sub-terms are represented by the same node, we call a term graph maximally
shared. Maximally shared term graphs are minimal in the order � and are the most
space efficient representation.

Next we investigate the influence of collapsing on size, and find an upper bound on
the potential collapsing steps. Hereby, the number of strict collapsing steps is bounded
by the size of the graph.

Lemma 3.20. S � T implies |S| > |T | and max{k | S �k T} 6 |S| − 1.

13

3.2 Term Graph Rewriting

Proof. The first statement follows from the definition of �. We prove the second statement
by induction on the size of S with the first statement. The intuition is:

f

a aa a· · ·

n = ar(f)

�

f

a a a· · ·

n− 1

�n−2
f

a
· · ·

So far we presented graphs and term graphs with different operations on them—most
notably union, redirection, and finding a morphism which gives rise to collapsing. Next
we want to use these operations to rewrite term graphs.

3.2 Term Graph Rewriting
To introduce term graph rewriting we must first consider graph rewrite rules and systems.

Definition 3.21. A graph rewrite rule is a triple (G, `, r), where G is a graph, ` is the
root node of the left hand side (lhs), and r is the root node of right hand side (rhs). That
is G�` = L ∈ T G(F ,V) and G�r = R ∈ T G(F ,V). Additionally the following holds:

1. lab(`) 6∈ V, and

2. Var(R) ⊆ Var(L), and

3. for all nodes n,m ∈ G, if lab(m) = lab(n) ∈ V then n = m.

A graph rewrite system (GRS) G is a set of graph rewrite rules.

Restriction 1 avoids a rule which matches every term graph, restriction 2 avoids free
variables on the rhs, and restriction 3 ensures, that all occurrences of a variable are
mapped to the same sub-graph. When all occurrences of a variable are represented by a
single node, we call a graph variable sharing.

Example 3.22. The following picture shows a graph rewrite rule. On the left is a single
graph as described in Definition 3.21 with distinguished root nodes ` and r. On the right
is a graph rewrite rule with separated graphs for the left and the right hand side. The
connection between the two sides is indicated through identical node numbers, here 3 .

f : 1 ∼ `

g : 2

x : 3

g : 4 ∼ r alternatively

f : 1

g : 2

x : 3

⇒ g : 4

x : 3

.

14

3.2 Term Graph Rewriting

To apply a graph rewrite rule to a term graph S we need to match the lhs with some
sub-graph of S. As mentioned before, we employ a morphism to find this matching.

Definition 3.23. Let L ⇒ R be a graph rewrite rule and S be a term graph, where
S ∩R = ∅. The term graph L matches the term graph S at redex node n, if there is a
morphism m : L→V S�n.

The morphism suspends the condition for equal labels on variable nodes. The condition
S ∩R = ∅ is required as to not accidentally get duplicate node numbers later on.

Example 3.24. We match a term graph with the lhs of the graph rewrite rule from
Example 3.22. Therefore we find the morphism from redex node b with the 1 7→ b ,
2 7→ c , and 3 7→ d . We indicate the redex node by a frame around it.

h : a

f : b

g : c

a : d

f : 1 ∼ `

g : 2

x : 3

g : 4 ∼ r

.

For defining a graph rewrite step we need to apply this graph morphism.

Definition 3.25. Let m : L→ S�n for a rule L⇒ R. The morphism m is applied to R,
denoted by m(R), by redirecting all variable nodes in R to their image. That is, for all
variable nodes n1, . . . , nk ∈ Var(R) we define

m(R) = ((R⊕ S)[m(n1)← n1]) . . . [m(nk)← nk].

Definition 3.21 requires that all variables are represented by the same node. Thus we
know that every node in Var(R) is in the domain of m.

Example 3.26. Here we apply the morphism computed in Example 3.24, i.e. d ← 4 :

h : a

f : b

g : c

a : d

f : 1 ∼ `

g : 2

x : 3

g : 4 ∼ r

.

15

3.2 Term Graph Rewriting

We apply the graph rewrite rule in a context, i.e. the nodes above the redex node n.
Note that n may be referenced by several edges.

Definition 3.27. Let S and T be term graphs, n ∈ S, and NS ∩ NT = ∅. The
replacement of the sub-graph S�n by T is defined as follows:

S[T]n :=
{
T if n = rt(S)
(S ⊕ T)[rt(T)← n]�rt(S) otherwise.

Example 3.28. Continuing with Example 3.26 first we redirect the incoming edge of
node b to node 4 . Then we collect all reachable nodes from the root a .

h : a

f : b

g : c

a : d

f : 1 ∼ `

g : 2

x : 3

g : 4 ∼ r

� a

h : a

a : d

g : 4
.

Finally we can define a term graph rewrite step.

Definition 3.29. Let G be a GRS. A term graph S rewrites to a term graph T , denoted
by S ⇒L⇒R,n T , if there is a graph rewrite rule L ⇒ R ∈ G with NR ∩NS = ∅ and a
morphism m : L→ S�n such that S[m(R)]n = T .

We sometimes write S ⇒G T , if S ⇒L⇒R,n T and L⇒ R ∈ G.

Example 3.30. Combining the graph rewrite rule from Example 3.22, the morphism
from Example 3.24 starting from redex node b , and the application from Example 3.26
with the redirection from Example 3.28, we get the following graph rewrite step:

h : a

f : b

g : c

a : d

⇒

h : a

g : 4

a : d

.

We briefly touch upon the consequences of not restricting the sharing within graph
rewrite rules. A detailed investigation is out of scope for this work. Definition 3.21 only

16

3.2 Term Graph Rewriting

requires variable nodes to be shared. Apart from variable sharing, no restriction is placed
upon how L and R are shared. This is contrary to [2, 4, 5], where the graph rewrite rules
share only variable nodes.

Sharing within L seems of little benefit and interest. To find a morphism it is best if a
lhs shares only variable nodes. Shared rhs’s may induce a loss of reachable term graphs.
Consider first the GRS G below, which shares only variables.

Example 3.31. Consider the GRS G, which shares only variable nodes:

f

x
⇒

h

g g

x

,

g

x
⇒ x .

Then G admits the rewrite sequence, where no form of collapsing is employed:

f

a
⇒G

h

g g

a

⇒G

h

g a

a

.

If G is changed so that the rhs’s of the rules share maximally, this rewrite sequence is
not possible any more. Consider first the modified rewrite system G�! , where the first
rule is maximally shared:

f

x
⇒

h

g

x

,

g

x
⇒ x .

Then the above rewrite sequence is not possible any more:

f

a
⇒G�!

h

g

a

⇒G�!

h

a
.

Throughout the remainder of this thesis we assume our graph rewrite systems to be
variable sharing—but only sharing variable nodes.

In the remaining part of this section we investigate how collapsing and sharing influences
the potential rewrite steps.

Lemma 3.32. If S ⇒L⇒R,n T for L⇒ R ∈ G and S < S′, then S′ ⇒L⇒R,n′ T
′.

17

3.3 From Terms to Term Graphs and Back Again

Proof. By the first assumption we have a morphism m1 : L→ S�n and S[m1(R)]n = T .
By the second assumption we have a morphism m2 : S → S′. Combining them we get a
morphism m3 : L→ S′�m2(n) with S[m1(R)]n <m2 S

′[m3(R)]m2(n).

We conclude the section with one of the greatest advantages of the graph representation:
the bound on size growth with each rewrite step from [2] Lemma 6.1.

Lemma 3.33. If S ⇒ T then |T | 6 |S|+ C where C = max{|R| | L⇒ R ∈ G}.

Proof. For S ⇒ T , we know that every node n ∈ T occurs either in S or R, hence
|T | 6 |S|+ |R| and |R| 6 |C|.

In the last section of this chapter we consider the translations from terms to term
graphs and vice versa.

3.3 From Terms to Term Graphs and Back Again
To investigate the relationship between term and term graph rewriting in the next
Chapter 4 we need to transfer from term graphs to terms and vice versa. We start by
computing a term from a term graph.

Definition 3.34. Let T be a term graph. The mapping term : T G(F ,V) → T (F ,V)
computes the term representation of T and is defined as

term(T) :=


x if lab(rt(T)) = x ∈ V
f(term(T �n1), . . . , term(T �nk)) if lab(rt(T)) = f ∈ F

and succ(n) = [n1, . . . , nk].

Note, that term is surjective but not injective in general. This is due to two reasons:
Reason (1) is the set N may be different, or the individual nodes may be organised
differently. Here injectivity can be restored with a canonical representation of the term
graph as presented in Definition 3.13. Reason (2) are shared nodes. An alternative to
Definition 3.12 is given next.

Definition 3.35. A node n in a term graph graph S is shared, if S�n represents more
than one sub-term in term(S).

Now we define the opposite and compute term graphs from terms. We hereby make
use of a canonical representation.

Definition 3.36. Let t be a term. The function treeT : T (F ,V)→ T G(F ,V) computes
the canonical tree representation of t—a term graph T = (NT , labT , succT), where

• NT = Pos(t)

• for all n ∈ NT , labT (n) = rt(t|n) and succT (n) = {n · i | i ∈ {1, . . . , ar(labT (n))}}.

18

3.3 From Terms to Term Graphs and Back Again

Note, that treeT is injective, but not surjective. In particular, term = treeT −1. We use
the function treeT to define the treeG of a term graph—which is its tree representation of
a term graph and maximal with respect to <.

Definition 3.37. For a term graph S, let treeG(S) := treeT (term(S)).

An explicit collapsing step does not change a term graph’s term representation.

Lemma 3.38. If S < T then term(S) = term(T).

Proof. The proof in [2, Lemma 4.17] is by structural induction on S. Alternatively, we can
construct treeG(S) and treeG(T), and obtain m1 : treeG(S)→ S and m2 : treeG(T)→ T .
From S < T we obtain m3 : S → T and can define m4 := m3 ◦ m1. Hence we
have treeG(S) < T 4 treeG(T), where treeG(T) and treeG(S) are maximal wrt. < and
hence treeG(T) ∼= treeG(S). By definition of treeG we have to show treeT (term(T)) ∼=
treeT (term(S)) implies term(S) = term(T). It suffices to show that treeT (s) ∼= treeT (t)
implies s = t, which is easy to prove by, e.g. contra-position.

The reverse of Lemma 3.38 does not hold, in particular term(S) = term(T) does imply
neither S < T nor T 4 S. To emphasize this consider the following example.

Example 3.39. For the term graphs S and T below we have term(S) = term(T), but
they are incomparable:

f

a a
6< and 64

f

a a
.

The translation between terms and term graphs naturally extends to rewrite systems.

Definition 3.40. We write R(G) for the TRS constructed from a GRS G, i.e. R(G) :=
{term(L)→ term(R) | L⇒ R ∈ G}.

Conversely, we construct a graph rewrite system from a term rewrite system.

Definition 3.41. We write G(R) for a GRS constructed from TRS R. For every
`→ r ∈ R we compute treeT (`) = L and treeT (r) = R. Then we compute L < L′ and
R < R′ such that all, but only, variable nodes are shared, i.e. NL′∩NR′ = Var(L′)∪Var(R′).
A graph rewrite rule is then (L′ ⊕R′, rt(L′), rt(R′)). We collect in G(R) all rules created
from R.

GRSs created in that way are by construction unique up to isomorphism. They are
variable sharing, but do not share any other node.

This chapter introduced the underlying formalism for the remainder of this thesis. We
continue now with an investigation of the potential combinations of collapsing and term
graph rewriting.

19

4 Collapsing and Rewriting

The ability to share equal sub-graphs is the essence of term graph rewriting. But how
do sharing and collapsing influence the potential graph rewrite steps? To answer this
question we investigate term graph rewriting with respect to term rewriting.

We start with a crucial result: every term graph rewrite step can be simulated by one
or more term rewrite steps.

Lemma 4.1. If S ⇒L⇒R,n T for L ⇒ R ∈ G, then term(S) →k
R(G) term(T), where

k = |Pos(n)|.

This lemma can be shown by induction over the nodes in S. In e.g. [17] the authors
employ a case analysis on whether n is the root node and then apply the induction
hypothesis k times, i.e. the number of paths from the root to n. Different to our setting,
term graphs in [17] are hyper graphs (cf. Chapter 7). A proof in our setting of term
graph rewriting in [2] relies on the definition of multi-hole contexts in terms, which are
simultaneously replaced.

Note that Lemma 4.1 does not rely on any particular form of how nodes are shared in
S and T nor does it incorporate any collapsing. Hence we stress: any graph rewrite step,
independent of how the nodes in the term graphs are shared, can be simulated by one or
more term rewrite steps. This naturally brings up the question: Can we simulate term
rewriting by term graph rewriting?

4.1 Adequacy
We want to know whether term graph rewriting is adequate for term rewriting. This
question was answered by Kennaway et al [18] and refined by Avanzini [2], as well as
Plump [29, 30] who investigates soundness and completeness.

Different notions of adequacy exist in literature. Informally speaking we say that a graph
rewrite relation .G ⊆ G(F ,V)× G(F ,V) is adequate for a term rewrite relation .R ⊆
T (F ,V)× T (F ,V) if we can simulate .R by .G and .G by .R. In [18] adequacy is defined
along four dimensions:

1. surjectivity, i.e. for every term t there exists a term graph T such that term(T) = t,

2. closure under reduction, i.e. if S .G T then S ∈ G(F ,V) and T ∈ G(F ,V).

3. preservation of reduction, i.e. if S .G T then term(S) .R term(T).

4. simulation of reduction, i.e. if term(S) .R t then S .G T where term(T) = t.

20

4.1 Adequacy

The main difference between [18] and [2] is that [18] works on cyclic term graphs where
.R is a restricted form of infinitary term rewriting. Furthermore [18] only considers
left-linear rules, which makes collapsing not a requirement. On the other hand [2] seeks to
precisely relate steps, and thus formulates Condition 3 and 4 for single steps. Therefore [2]
needs an explicit collapsing and uncollapsing relation.

From Lemma 4.1 we know that for a graph rewrite step S ⇒G T we can find correspond-
ing term rewrite steps term(S)→+

R(G) term(T). This is also referred to as soundness. On
the other hand completeness is formulated as follows and proved in [29, 30]. In the proof
the combination of ⇒ and � by ∪ is necessary to allow the base case of the induction.

Lemma 4.2. Let R be a TRS and G(R) the corresponding GRS. For all term graphs S
and T ,

term(S) (→∪ →)∗ term(T) iff S (⇒ ∪ � ∪ ⇒∪ ≺)∗ T .

In course of this work we only give an intuition why collapsing and uncollapsing
are needed. An explicit collapsing relation is needed, because in term graph rewriting
equality is expressed through equal nodes. So even if two sub-graphs are the “same”, i.e.
isomorphic, this “same-ness” is not reflected if these sub-graphs are not represented by
the same node. To remedy this we need collapsing. To clarify—an example:

Example 4.3. The following unique representation of GRS G checks whether two
arguments are equal—by checking whether they are represented by the same node:

eq

x : 1

⇒ true , a ⇒ b .

Then G admits the following derivation starting from the unique graph representation
of eq(a, b):

eq

a b
⇒G

eq

b b

eq

x : 1 .

After rewriting a to b, the eq-rule is not applicable because there is no morphism from
the lhs to the term graph. As indicated by the zig-zag line the node 1 cannot be mapped
to two different nodes, even if they are the represent the same term. To make the eq-rule
applicable we need an explicit collapse step:

eq

b b
�

eq

b
⇒G true .

In the lhs of a rule all nodes representing the same variable have to be shared by
definition. Thus collapsing is crucial for for non-left linear systems. Indeed we can simulate
term rewriting with term graph rewriting with only uncollapsing if R is left-linear [2,
p. 58].

21

4.2 Combine Rewriting and Collapsing

But why is uncollapsing required? This is illustrated in the following Example 4.4
which also shows the reverse of Lemma 4.1 to not hold in general: not every term rewrite
step can be simulated by term graph rewrite steps.

Example 4.4. Consider the TRS R:

f(x)→ g(x, x) , a→ b .

Then the following term rewriting sequence is possible:

f(a)→R g(a, a)→R g(a, b) .

This derivation cannot be simulated with term graph rewriting. Consider first the unique
representation of GRS G(R):

f

x
⇒

g

x
, a ⇒ b .

The above derivation does not yield the same result:

f

a
⇒G(R)

g

a
.

The step g(a, a)→R g(a, b) cannot be simulated. This is due to the fact, that there is
no inverse operation of collapsing. To simulate the step we need the following explicit
uncollapsing step:

g

a
≺

g

a a
⇒G(R)

g

a b
.

Hence for adequacy we need to be able to collapse a term graph, but also the reverse:
we need to be able to uncollapse. But—why do we insist on adequacy? What if we do
not demand adequacy and treat term graphs as first-order citizens?

4.2 Combine Rewriting and Collapsing
The aim of this section is to investigate what happens if we disregard adequacy of term
graph rewriting for term rewriting. As we have seen in the previous section, adequacy
demands collapsing and the reverse operation: uncollapse.

We argue that uncollapsing is counter-intuitive for term graph rewriting. It is in
contrast to the idea of sharing equal sub-graphs. Thus we argue to drop uncollapsing.
However for collapsing we argue in a different direction. We want to reap the fruits of
term graph rewriting, i.e. the explicit option of sharing equal sub-graphs. Indeed when

22

4.2 Combine Rewriting and Collapsing

defining embedding of term graphs in Chapter 5 and a termination order in Chapter 6
we take sharing into account.

So we aim to integrate collapsing with the rewrite relation. But how to combine the
collapsing relation with the rewrite relation? We have different ways to combine the graph
rewrite relation ⇒ with a collapsing relation: by concatenation (·) or by union (∪). For
the collapsing relation we can choose strict collapsing (�), collapsing with equality (<),
or collapsing to normal form (�!). We can immediately discard some combinations based
on obvious observations.

• ⇒ · � and � ·⇒ do not allow rewrite steps without collapsing, e.g. with the rule
a⇒ b we cannot rewrite a, because b 6� b.

• ⇒ ∪< immediately introduces non-termination as witnessed by T < T < T · · ·

• ⇒ ∪ �! also introduces non-termination: T �! T �! T · · ·

The non-termination observed in the last item can be countered by eliminating reflex-
ivity from �!. We thus introduce a new relation �!+ := � · �! to avoid the encountered
problem. This leaves several potential combinations, which we now want to investigate
systematically in turn with respect to

1. inclusion, and

2. normal forms.

For the former, inclusion, our aim is to find out to what extend we can simulate one
relation with the other and where and why we fail. We investigate the latter, normal
forms, as they correspond to our notion of a result. These two aspects, inclusion and
normal forms, are also important when comparing rewrite strategies [36].

We list the potential combinations and comparisons in Figure 4.1, where we refer
to those lemmata which state facts about the relationship between the two relations.
Roughly we can divide the combinations in three sections: Section 4.3 deals with different
combinations of collapsing through concatenation, Section 4.4 with different combinations
of collapsing through union, and Section 4.5 compares combinations through concatenation
with combinations through union.

We start by stating and showing some general lemmata about normal forms, which
will prove useful throughout our analysis. Recall that .1 and .2 are arbitrary binary
relations, and .=

2 denotes the reflexive closure of .2.

Lemma 4.5. NF(.1) ⊆ NF(.1 · .2).

Proof. We need to show that a ∈ NF(.1) implies a ∈ NF(.1 · .2). By contra-position
we have to show a 6∈ NF(.1 · .2) implies a 6∈ NF(.1). Then by a 6∈ NF(.1 · .2) we have
∃b. a .1 c .2 b. But then ∃c. a .1 c, hence a 6∈ NF(.1).

We inspect the reverse direction to discover:

Lemma 4.6. NF(.1 · .=
2) ⊆ NF(.1).

23

4.3 Concatenating Collapse

⇒ ·</< · ⇒ ⇒ · �!/�! · ⇒ ⇒∪� ⇒∪�!+

Lem. 4.10 & 4.12 Lem. 4.14 & 4.16 Lemma 4.21 Lemma 4.22 ⇒
Section 4.3 Section 4.3 Section 4.4 Section 4.4

Lem. 4.19 & 4.20 Lem. 4.25 & 4.28 Lem. 4.30 & 4.31 ⇒ ·</< · ⇒
Section 4.3 Section 4.5 Section 4.5

Lem. 4.32 & 4.33 Lem. 4.34 & 4.35 ⇒ · �!/�! · ⇒
Section 4.5 Section 4.5

Lemma 4.23 ⇒∪�
Section 4.4

Figure 4.1: Combinations between the collapsing and the rewriting relation.

Proof. We need to show that a ∈ NF(.1 · .=
2) implies a ∈ NF(.1). By contra-position

we have to show that a 6∈ NF(.1) implies a 6∈ NF(.1 · .=
2). Then by a 6∈ NF(.1) we have

∃b. a .1 b. By reflexivity of .=
2 we have ∃b. a .1 b .

=
2 b and hence a 6∈ NF(.1 · .2).

Combining Lemma 4.5 and Lemma 4.6 we establish the following equality:

Lemma 4.7. NF(.1) = NF(.1 · .=
2).

If one relation is included in another also their normal forms are included—but in
reverse order.

Lemma 4.8. If .1 ⊆ .2 then NF(.2) ⊆ NF(.1).

Proof. By contra-position we have to show a 6∈ NF(.2) implies a 6∈ NF(.1). Then by
a 6∈ NF(.2) we have ∃b. a .2 b. By .1 ⊆ .2 we now know a .1 b, hence a 6∈ NF(.1).

Finally we investigate how the union of two relations affects their normal forms.

Lemma 4.9. NF(.1 ∪ .2) = NF(.2) ∩ NF(.1).

Proof. By a ∈ NF(.1∪.2) we have a ∈ NF(.1) and a ∈ NF(.2) hence a ∈ NF(.1) ∩ NF(.2).

With these lemmata we start investigating the combination between ⇒ and collapsing
through concatenation.

4.3 Concatenating Collapse
In this section we first cover⇒ versus⇒ ·< and the reversed < · ⇒, then⇒ versus⇒ · �!

and the reversed �! · ⇒, and finally ⇒ ·< versus ⇒ · �!, as well as the reversed < · ⇒
versus �! · ⇒. Throughout this section we will present (notorious) counter-examples to
inclusion. The examples show steps which are possible with one combination but not the
other. First we compare the graph rewrite relation without any collapsing (⇒) with the
graph rewrite relation concatenated with collapsing (⇒ ·<).

24

4.3 Concatenating Collapse

⇒ ·<

< · ⇒
⇒

NF(< · ⇒)

NF(⇒) = NF(⇒ ·<)

Figure 4.2: Between ⇒, ⇒ ·<, and < · ⇒.

Lemma 4.10. ⇒ (⇒ ·< and NF(⇒) = NF(⇒ ·<).

Proof. By reflexivity of < we have ⇒ ⊆ ⇒ ·<, and Example 4.11 below refutes the
reverse direction. The second statement follows from Lemma 4.7.

Example 4.11. Consider the rule a⇒ b and the following rewrite step:

f

a b

��⇒ ⇒ ·< ���< · ⇒
⇒ · �! ���

��! · ⇒
f

b
.

The term graph on the right is not reachable by ⇒, neither by < · ⇒ nor �! · ⇒, as
we lack the ability to share the two bs after performing the rewrite step.

Next, we compare the graph rewrite relation without any collapsing (⇒) with the
graph rewrite relation where now collapsing is invoked first (< · ⇒).

Lemma 4.12. ⇒ (< · ⇒ and NF(< · ⇒) (NF(⇒).

Proof. By reflexivity of < we have ⇒ ⊆ < · ⇒, and Example 4.13 below refutes the
reverse direction. Further NF(< · ⇒) ⊆ NF(⇒) follows from the reflexivity of <. The
reverse is refuted by Example 4.13 too, as the term graph on the left is in NF(⇒).

Example 4.13. Consider the rewrite rule below on the right and the rewrite step:

f

a a
��⇒ ���⇒ ·< < · ⇒

��
��⇒ · �! �! · ⇒ c with rule

f

a
⇒ c .

We cannot apply the rule without a preceding collapsing step. Thus we cannot rewrite
with ⇒, and neither with ⇒ ·< nor with ⇒ · �!.

Figure 4.2 shows Venn-diagrams of ⇒, ⇒ ·<, and < · ⇒, and their respective normal
forms. For < · ⇒ strictly more steps than for⇒ are possible, i.e. more rules are applicable.
But consequently we have less normal forms. On the other hand ⇒ and ⇒ ·< have more
normal forms. From a term rewriting perspective these normal forms are un-intuitive as
they stem from non-applicability of a rule based on a structural mismatch.

Next we compare the graph rewrite relation (⇒) with the graph rewrite relation
followed by collapsing to normal form (⇒ · �!).

25

4.3 Concatenating Collapse

⇒ · �!

�! · ⇒
⇒

NF(�! · ⇒)

NF(⇒) = NF(⇒ · �!)

Figure 4.3: Between ⇒, ⇒ · �!, and �! · ⇒.

Lemma 4.14. ⇒ 6⊆ ⇒ · �! and ⇒ · �! 6⊆ ⇒, but NF(⇒) = NF(⇒ · �!).

Proof. The first statement is witnessed by Example 4.15 below, and the second statement
is witnessed by Example 4.11. For the last statement we know NF(⇒) ⊆ NF(⇒ · �!) from
Lemma 4.5. To show the opposite direction we use contra-position to show S 6∈ NF(⇒)
implies S 6∈ NF(⇒ · �!). By assumption ∃T . S ⇒ T but then T �! T ′, where potentially
T = T ′, and thus S 6∈ NF(⇒ · �!).

Example 4.15. Given rule a⇒ b and the following rewrite step:

f

a b

⇒ ⇒ ·< < · ⇒
��

��⇒ · �! �! · ⇒
f

b b
.

Enforcing maximal sharing after the rewrite step forbids to reach the term graph on
the right.

Again we compare the graph rewrite relation without any collapsing (⇒) with the
graph rewrite relation where now collapsing comes first (�! · ⇒).

Lemma 4.16. ⇒ 6⊆ �! · ⇒ and �! · ⇒ 6⊆ ⇒, but NF(�! · ⇒) (NF(⇒).

Proof. The first statement is witnessed by Example 4.17 below, the second by Exam-
ple 4.13. For NF(�! · ⇒) ⊆ NF(⇒), by contra-position we have to show S 6∈ NF(⇒)
implies S 6∈ NF(�! · ⇒). As S 6∈ NF(⇒), ∃T . S ⇒ T . By Lemma 3.32 S ⇒ T implies
S′ �! · ⇒ T ′ for some S �! S′. The opposite direction is refuted by Example 4.13.

Example 4.17. Given rule a⇒ b and the following rewrite step:

f

a a

⇒ ⇒ ·< < · ⇒
⇒ · �! ��

���! · ⇒
f

a b
.

Enforcing maximal sharing before the rewrite step forbids to reach the term graph on
the right.

The Venn-diagrams of ⇒, ⇒ · �!, and �! · ⇒, and their respective normal forms are
shown in Figure 4.3—and show the same relationships as in Figure 4.2.

26

4.3 Concatenating Collapse

At this point we start a brief interlude and investigate the difference between collapsing
before and after the rewrite step for more than one step. If we expand a rewrite sequence
with . ∈ {<,�!} we get:

T1 . T2 ⇒ T3 . · · · . Tn−1 ⇒ Tn . Tn+1 .

So only the first or the last collapsing step really differ between . · ⇒ and ⇒ · .. For
. · ⇒ we have to include the final step Tn . Tn+1 for Tn+1 to be in a more, or the most,
space efficient representation. Similar to what we observed in Example 4.11. That is, the
last step with rule a⇒ b gives rise to one more collapsing step:

· · · ⇒ · .
f

a b
⇒ · .

f

b b
.

f

b
.

For the reverse ⇒ · . one has to start with T1 . T2, i.e. the initial term graph has
to be shared appropriately. Again we observed this already—in Example 4.13. This
observation gives raise to the following straight-forward lemma:

Lemma 4.18. For . = < or . = �! we have

. · (⇒ · .)n = (. · ⇒)n · . .

Proof. Easy induction on n.

Finally we investigate the difference between the graph rewrite relation concatenated
with collapsing (⇒ ·<) and the graph rewrite relation concatenated with collapsing to
normal form (⇒ · �!).

Lemma 4.19. ⇒ · �! (⇒ ·< and NF(⇒ · �!) = NF(⇒ ·<).

Proof. By �! ⊆ < we have⇒ · �! ⊆ ⇒ ·<. We refute the other direction in Example 4.15.
By Lemmas 4.10 and 4.14 we have NF(⇒ ·<) = NF(⇒) = NF(⇒ · �!).

As before we also compare the situation where collapsing comes before the rewrite
step.

Lemma 4.20. �! · ⇒ (< · ⇒ and NF(�! · ⇒) = NF(< · ⇒).

Proof. By �! ⊆ < we have �! · ⇒ ⊆ < · ⇒. We refute the other direction by Example 4.17.
From Lemma 4.8 and the first statement we get NF(< · ⇒) ⊆ NF(�! · ⇒). The opposite
direction we show by contra-position: S 6∈ NF(< · ⇒) implies S 6∈ NF(�! · ⇒). By
assumption we know ∃T . S < S′ ⇒ T , and S < S′ �! S′′. By Lemma 3.32 we know that
S′′ ⇒ T , hence S 6∈ NF(�! · ⇒).

Finally Figure 4.4 shows Venn-diagrams of ⇒ ·< and ⇒ · �!, of < · ⇒ and �! · ⇒, and
their respective normal forms. After investigating the combinations through concatenation
in the next section we investigate the combinations through union.

27

4.4 Union Collapse

⇒ · �!

⇒ ·<

�! · ⇒

< · ⇒

NF(< · ⇒) = NF(�! · ⇒)

NF(⇒ ·<) = NF(⇒ · �!)

Figure 4.4: Between ⇒ ·< and ⇒ · �!, as well as < · ⇒ and �! · ⇒.

4.4 Union Collapse
In this rather short section we investigate the graph rewrite relation (⇒) with the graph
rewrite relation union collapse (⇒∪�) and union collapse to normal form (⇒∪�!+).
Finally we compare also the latter two with each other. As in the previous section,
we first compare the graph rewrite relation without any collapsing (⇒) with the graph
rewrite relation combined with the collapsing relation by union (⇒∪�). The following
statement follows directly from definition and Lemma 4.9.

Lemma 4.21. ⇒ (⇒∪� and NF(⇒∪�) = NF(⇒) ∩ NF(�).

Next we compare the graph rewrite relation without any collapsing (⇒) with the graph
rewrite relation now combined with the full collapsing relation (⇒∪�!).

Lemma 4.22. ⇒ (⇒∪�!+ and NF(⇒∪�!+) = NF(⇒) ∩ NF(�).

Proof. Again the first statement follows directly from definition. For the second statement
by Lemma 4.9 we have NF(⇒∪�!+) = NF(⇒) ∩ NF(�!+) from �!+ , defined as � · �!,
we get NF(�!+) = NF(�).

Finally we compare the difference between collapsing (�) and collapsing to normal
form (�!+) when in union with graph rewrite relation (⇒).

Lemma 4.23. ⇒∪�!+ (⇒∪� and NF(⇒∪�!+) = NF(⇒∪�).

Proof. By �!+ ⊆ � we have ⇒∪�!+ ⊆ ⇒∪�. The reverse is refuted by Example 4.24
below. The second statement follows directly from Lemma 4.21 and Lemma 4.22.

Example 4.24. Independent of ⇒ we cannot simulate the following step:

g

a aa

⇒∪�
���

��⇒∪�!+

g

a a
.

Clearly collapsing to normal form forbids any intermediate form of collapsing.

Again we show Venn-diagrams in Figure 4.5 now of the different versions of combining
⇒ by union with � and �!+ .

28

4.5 Between Concatenation and Union

⇒⇒∪�!+⇒∪�

NF(�)

NF(⇒)

NF(⇒∪�) = NF(⇒∪�!+)

Figure 4.5: Between ⇒, ⇒∪�, and ⇒∪�!+ .

4.5 Between Concatenation and Union
Finally we compare the difference between the combinations based on concatenation
and based on union. We compare first ⇒∪� with ⇒ ·< and < · ⇒, then ⇒∪�!+ with
⇒ ·< and < · ⇒. Afterwards we look at ⇒∪� versus ⇒ · �! and �! · ⇒, and finally
⇒∪�!+ versus ⇒ · �! and �! · ⇒.

We start by comparing ⇒∪� with ⇒ ·<. Clearly they are incomparable for a single
step—for one because the former allows a single collapsing step and the latter does not.
On the other hand, the latter is a concatenation of two relations, ⇒ and <, and the
former is only a choice of one.

Lemma 4.25. ⇒∪� 6⊆ ⇒ ·< and ⇒ ·< 6⊆ ⇒ ∪ �, but NF(⇒∪�) (NF(⇒ ·<).

Proof. The first two statements are shown by Example 4.26 and Example 4.27 below. For
NF(⇒∪�) (NF(⇒ · �) we know that by Lemma 4.9 NF(⇒∪�) = NF(⇒) ∩ NF(�)
and by Lemma 4.10 NF(⇒) = NF(⇒ ·<), and thus NF(⇒∪�) = NF(⇒ ·<) ∩ NF(�).
Now as in general NF(�) 6= ∅, and clearly NF(�) 6= NF(⇒ ·<), the statement holds.

Example 4.26. In general a single collapsing step cannot be achieved when combining
the graph rewrite relation and collapsing through concatenation:

f

a a
���⇒ ·< ���< · ⇒ ⇒ ∪�
���

�⇒ · �! ���
��! · ⇒ ⇒∪�!+

f

a
.

There is no possibility to simulate this step with either ⇒ · �, or ⇒ · �!, < · ⇒, and
�! · ⇒—even for G = ∅ with some f ∈ F with ar(f) > 2.

On the other hand we cannot simulate a step with incorporates two relations, e.g.
⇒ ·< with ⇒ and < with just a choice of one relation from e.g. ⇒∪�.

Example 4.27. We repeat Example 4.11. Consider rule a⇒ b for the following rewrite
step:

f

a b

⇒ ·< ���
�⇒∪�

⇒ · �! ���
��⇒∪�!+

f

b
.

29

4.5 Between Concatenation and Union

It is not possible to simulate ⇒ · �, nor ⇒ · �!, with only one step in ⇒∪�, or
⇒∪�!+ .

As before we now investigate the difference if collapsing comes first (< · ⇒) and compare
it to the graph rewrite relation union collapsing (⇒∪�).

Lemma 4.28. ⇒∪� 6⊆ < · ⇒ and < · ⇒ 6⊆ ⇒ ∪�, but NF(⇒∪�) (NF(< · ⇒).

Proof. Again the first statement follows from Example 4.26. The second statement is
justified by Example 4.29 below. To show the last statement we show by contra-position
S 6∈ NF(< · ⇒) implies S 6∈ NF(⇒∪�). By assumption ∃S′ T . S < S′ ⇒ T , but then
if S � S′ then S 6∈ NF(�), and if S = S′ then S′ ⇒ T and S 6∈ NF(⇒). The reverse is
refuted by Example 4.15, which is in NF(< · ⇒), but not in NF(⇒∪�).

Example 4.29. We recall Example 4.13. Consider the rewrite rule below on the right
and the rewrite step:

f

a a

< · ⇒ ��
��⇒∪�

�! · ⇒ ��
���⇒∪�!+ c with rule

f

a
⇒ c .

Again it is not possible to simulate two relations with just a choice of one.

Next we compare the graph rewrite relation concatenated with collapsing (⇒ ·<) with
the graph rewrite relation union collapsing to normal form (⇒∪�!+).

Lemma 4.30. ⇒∪�!+ 6⊆ ⇒ ·< and ⇒ ·< 6⊆ ⇒ ∪ �!+ , but NF(⇒∪�!+) (NF(⇒ ·<).

Proof. The first two statements follow from Example 4.26 and Example 4.27. The last
statement follows from Lemma 4.25 and NF(⇒∪�!+) = NF(⇒∪�).

Again we check the case when collapsing comes first (< · ⇒) and compare it to the
graph rewrite relation union collapsing to normal form (⇒∪�!+).

Lemma 4.31. ⇒∪�!+ 6⊆ < · ⇒ and < · ⇒ 6⊆ ⇒ ∪�!+ , but NF(⇒∪�!+) (NF(< · ⇒).

Proof. The first two statements follow from again Example 4.26 and Example 4.29. The
last statement follows from Lemma 4.28 and NF(⇒∪�!+) = NF(⇒∪�).

Next we compare the concatenation of the graph rewrite relation with collapsing to
normal form (⇒ · �!) with the union of the graph rewrite relation with collapsing (⇒∪�).

Lemma 4.32. ⇒∪� 6⊆ ⇒ · �! and ⇒ · �! 6⊆ ⇒ ∪ �, but NF(⇒∪�) (NF(⇒ · �!).

Proof. The first two statements follow from Example 4.26 and Example 4.27. The last
statement follows from Lemma 4.14, NF(⇒ ·<) = NF(⇒) and Lemma 4.9 as in general
NF(�) 6= ∅.

30

4.5 Between Concatenation and Union

⇒ · .2

⇒∪ .1

.2 · ⇒

⇒∪ .1 NF(⇒∪ .1)NF(.2 · ⇒)

NF(⇒ · .2)

Figure 4.6: Comparing ⇒∪ .1 with ⇒ · .2 and .2 · ⇒, where we have .1 ∈ {�,�!+} and
.2 ∈ {<,�!}.

Now we compare again the union of the graph rewrite relation with collapsing (⇒∪�),
with the concatenation of collapsing to normal form, but now with collapsing first (�! · ⇒).

Lemma 4.33. ⇒∪� 6⊆ �! · ⇒ and �! · ⇒ 6⊆ ⇒ ∪�, but NF(⇒∪�) (NF(�! · ⇒).

Proof. The first two statements again follow from Example 4.26 and Example 4.29. The
last statement follows from Lemma 4.19, NF(�! · ⇒) = NF(< · ⇒) and Lemma 4.28.

Then we compare the concatenation of the graph rewrite relation with collapsing to
normal form (⇒ · �!) with the union of the graph rewrite relation with collapsing to
normal form (⇒∪�!+).

Lemma 4.34. ⇒∪�!+ 6⊆ ⇒ · �! and⇒ · �! 6⊆ ⇒ ∪ �!+ , but NF(⇒∪�!+) (NF(⇒ · �!).

Proof. The first two statements follow from Example 4.26 and Example 4.27. The last
statement follows from Lemma 4.28 and NF(⇒∪�!+) = NF(⇒∪�).

Now we compare again the union of the graph rewrite relation with collapsing to
normal form (⇒∪�!+), with the union of the graph rewrite relation with collapsing to
normal form, but now collapsing comes first (�! · ⇒).

Lemma 4.35. ⇒∪�!+ 6⊆ �! · ⇒ and �! · ⇒ 6⊆ ⇒ ∪�!+ , but NF(⇒∪�!+) (NF(�! · ⇒).

Proof. The first two statements follow from again Example 4.26 and Example 4.29. The
last statement follows from Lemma 4.33 NF(⇒∪�!+) = NF(⇒∪�).

As before we summarise the results in a Venn-diagrams in Figure 4.6. Here we use
the generic .1 ∈ {�,�!+} and .2 ∈ {<,�!} because the relationship holds for any
combination of those collapsing relations.

We observed that there is no one-to-one correspondence between rewriting combined
with collapsing through concatenation and rewriting combined with collapsing through
union. But what about an m-to-n correspondence? This we will inspect next. As we can
see from Example 4.29 we require a preceding collapsing step.

31

4.5 Between Concatenation and Union

Lemma 4.36. For .1 = < and .2 = �, or .1 = �! and .2 = �!+, and for all n ∈ N we
have a m ∈ N such that

S .1 · (⇒ · .1)n T ⊆ S (⇒∪ .2)m T .

Here m 6 (n+ 1)× (|S|+ n× C) with C = max{|R| | L⇒ R ∈ G} of G underlying ⇒.

Proof. We have to prove that S .1 S′ (⇒ · .1)n T implies S (⇒∪ .2)m T for m 6
(n+ 1)× (|S|+ n× C) by induction over n.

Base Case. n = 0 : hence S .1 S
′ = T . For S .2 S

′ by Lemma 3.20 if .1 = < we have
m 6 |S| − 1 hence m 6 (n+ 1)× (|S|+ n× C). If .1 = �! we have m 6 1 hence
also m 6 (n+ 1)× (|S|+ n× C).

Step Case. S .1 S′ (⇒ · .1)n T ⇒ · .1 U implies S (⇒∪ .2)m T (⇒∪ .2)k U for
some m+ k 6 (n + 2) × (|S| + (n+ 1)× C). By induction hypothesis we have
m 6 (n+ 1)× (|S|+ n× C). We analyse the last step, T ⇒ T ′ .1 U simulated by
T ⇒ T ′ .k2 U :
Case. T ′ ∼= U Then k = 0 and the bound on m holds.
Case. T ′ � U Then k 6 |T ′| − 1 and |T ′| 6 |S|+ n× C by Lemma 3.33. Then

m+ k 6 m+ |S|+ n× C 6 (n+ 2)× (|S|+ n× C) by induction hypothesis.

The above bound is a slight over-approximation. Each performed collapsing step �
and �! results in an actual decrease of the size of the term graph. This is not reflected
in the bound. For �! and �!+ the opposite direction does not hold as witnessed by the
following lemma.

Lemma 4.37. �! · (⇒ · �!)n ((⇒∪�!+)m.

Proof. Lemma 4.36 shows �! · (⇒ · �!)n ⊆ (⇒∪�!+)m. This inclusion is strict, as �! is
not reflexive. With the rule a⇒ b the following step is possible:

f

a a

(⇒∪�!+)m

(((
((((�! · (⇒ · �!)n

f

a b
.

For the other direction we try not to collapse to normal form, that is we employ only
< and �.

Lemma 4.38. For all m ∈ N there is an n 6 m such that

S (⇒∪�)m T ⊆ S < · (⇒ ·<)n T .

Proof. We prove S (⇒∪�)m T implies S < S′ (⇒ ·<)n T by induction over m.

32

4.5 Between Concatenation and Union

Base Case. m = 0: hence S = T and by reflexivity of < also S < S = T holds for n = 0.

Step Case. S (⇒∪�)m T (⇒∪�) U implies S < S′ (⇒ ·<)n T (⇒ ·<)k U for some
n+ k 6 m+ 1 for k 6 1. We analyse the last step:
Case. S (⇒∪�)m T ⇒ U By induction hypothesis exists some n 6 m and by

reflexivity of < we have T ⇒ ·< U , hence k = 1 and n+ k 6 m+ 1.
Case. S (⇒∪�)m T � U If the (m − 1)th step is �, by transitivity of � we

have S (⇒∪�)m U and hence by induction hypothesis exists an n 6 m.
Otherwise, we have S (⇒∪�)m−1 T ′ ⇒ T � U , which can be combined to
the single step T ′ ⇒ ·< U . By applying the induction hypothesis we get
S < S′ (⇒ ·<)n−1 U for some n− 1 6 m− 1 and together with T ′ ⇒ ·< U
we have n 6 m.

The next Lemma 4.39 follows immediately from the above Lemma 4.36 and Lemma 4.38,
but is also a equality obtained by standard reasoning in the Kleene algebra: for binary
relations .1 and .2, where .2 is transitive and .=

2 is the reflexive closure of .2 we have
(.1 ∪ .2)m = .=

2 · (.1 · .=
2)n.

Lemma 4.39. For n 6 m and m 6 (n+1)×(|S|+n×C) with C = max{|R| | L⇒ R ∈ G}
of G underlying ⇒ we have:

S < · (⇒ ·<)n T = S (⇒∪�)m T .

Hence there is a linear relationship between the graph rewrite relation combined with
union and combined through concatenation—given an appropriate pre- or post-processing
step following Lemma 4.18.

This chapter illustrated how sensitive term graph rewriting is to small changes. Whether
we use concatenation or union, collapsing or collapsing to normal form, collapsing before
or after the graph rewrite step—we always provoke slightly different effects. In particular
some notorious examples arise. On the one hand we cannot apply a rewrite rule—either
because we cannot collapse the term graph or we collapse to normal form and thereby
collapse too much. On the other hand, we cannot reach some term graphs after applying
a rewrite step. However most of the differences vanish, if we do not restrict to single
steps.

With this we conclude our investigation of how to combine the graph rewriting relation
with the collapsing relation. In the next two chapters we investigate the termination
behaviour of graph rewriting. Therefore we start with Kruskal’s Tree Theorem for term
graphs.

33

5 Kruskal’s Tree Theorem for Term Graphs

We know that termination of term rewriting implies termination of graph rewriting.
But: the opposite direction does not hold. This is witnessed by, e.g. Toyama’s counter
example for modularity of termination in term rewriting [35]. For term graph rewriting
this example does terminate [20].

Hence there are some terminating GRSs for which the corresponding TRS does not
terminate. We are interested in this gap and in techniques to show termination of
such GRSs. This is also the interest of [28] where Plump develops a technique to show
termination of term graph rewrite systems. In this chapter we follow and extend upon
his idea. We published the results in this and the next chapter in [23]. We start by the
example that serves as motivation of many works on term graph rewriting, e.g. [26], [20],
[33], or [37].

Example 5.1. Recall Toyama’s TRS R:

f(a, b, x)→ f(x, x, x) , g(x1, x2)→ xi, i ∈ {1, 2} .

This allows the non-terminating term rewrite sequence:

f(a, b, g(a, b))→R f(g(a, b), g(a, b), g(a, b))→2
R f(a, b, g(a, b))→R · · ·

The corresponding GRS G(R) has a unique representation. It is depicted next:

f

ba x
⇒

f

x
,

g

x1 x2

⇒ xi, i ∈ {1, 2} .

Note that in the first rule on the right-hand side the node corresponding to the
variable x is shared. Now we try to simulate the above derivation starting from a graph
representation of the above term:

f

ba g

a b

⇒G(R)

f

g

a b

⇒G(R)
f

aa
.

As opposed to the derivation with term rewriting the graph rewriting derivation reaches
a normal form and is terminating. In the absence of uncollapsing it is not possible to
simulate the term rewrite sequence.1

1The system is left linear and hence no explicit collapsing operation, e.g. �, is necessary.

34

Key here is the absence of uncollapsing. A node which is shared—either through a
rewrite or a collapsing step—cannot be uncollapsed again by an explicit operation.2 So
in G(R) we can distinguish the function symbol f by the sharing of its arguments. In
Example 5.1 in the first rule on the lhs the function symbol f has three distinct argument
nodes, but on the rhs the three arguments of f are represented by the same node. This
has been explored by Plump [28]. He defines an order on the Tops of term graphs. The
Top of a term graph takes the structure of the arguments of a function symbol into
account. We continue with Example 5.1 and show the Tops of the first rule.

Example 5.2. Let M be a fresh constant—similar to � in a term. The left rule in
Example 5.1 gives rise to the following two different Tops for the function symbol f:

f

MM M

,
f

M
.

We give formal definitions for (i) the Top of a term graph S starting from a node n,
and (ii) the set of Tops based on a function symbol f . We start with (i) and compute
the Top of a term graph S from a node n. Thereby, n remains unchanged, the labels for
the successors are set to M, and the successors of the successors of n are discarded.

Definition 5.3. Let S be a term graph over F , n ∈ S, and M a fresh constant wrt. F .
Then TopS(n) = ({n} ∪ succS(n), labTop, succTop) is a term graph, where

• labTop(n) = labS(n) and succTop(n) = succS(n),

• for succS(n) = n1, . . . , nk and 1 6 i 6 k, set labTop(ni) =M, and succTop(ni) = [].

We abbreviate TopS(rt(S)) with Top(S).

The previous Definition 5.3 shows how to compute a Top from a given term graph
and a given node. The next Definition 5.4 defines (ii), the set of Tops computed from a
function symbol by exploiting the reflexive and transitive closure of �.

Definition 5.4. Let f ∈ F , M a fresh constant, and S = treeG(f(M, . . . ,M)). Then
Tops(f) = {T | S �∗ T}. This definition extends to a signature F with Tops(F) =⋃
f∈F Tops(f).

Neither Top nor Tops necessarily produce canonical term graphs. For Tops this depends
on the implementation of collapsing (�), as treeG produces canonical term graphs. This
is a rather technical detail concerning node numbers but to ensure for some term graph
S that Top(S) ∈ Tops(F), we have to deal with it. To do so we extend the definition of
Tops to capture all isomorphic copies.

Definition 5.4 (continued). For T ∈ Tops(F) and T ∼= T ′, let T ′ ∈ Tops(F).
2If there is an edge to a node from the context to the matched lhs, this node will remain after a rewrite

step. This could be seen as some form of uncollapsing, cf. Chapter 6.

35

By definition the elements of Tops are also term graphs, i.e. Tops(F) ⊆ T G(F ∪ {M}).

Example 5.5. If we add the three Tops:

f

M M ,

f

M M ,

f

M
M

to the Tops from Example 5.2, we have Tops(f) with ar(f) = 3.

As a side remark: For a function symbol f with ar(f) = k the amount of Tops
corresponds to the equivalence relation, or partitions, of k-element sets. It is given by
B0 = 1 and Bk =

∑k−1
i=0

(k
i

)
Bk−1.

Now we can define an order v, a precedence, on Tops(F). This is similar to the
precedence on the signature F in the term rewrite setting. We start by giving an order
on the Tops of Toyama’s GRS.

Example 5.6. The GRS in Example 5.1 can be proven terminating with the following
precedence on Tops(F):

f

M
v

f

MM M
and a v b .

Definition 5.7. A precedence on a signature F is a transitive relation v on Tops(F)
such that for S, T ∈ Tops(F) the following conditions hold:

(i) S ∼= T implies S v T and T v S, and

(ii) T v S implies |T | 6 |S|.

By Condition (i)v is reflexive, but also includes isomorphic copies of Top. Condition (ii)
guarantees that the larger Top has at least as many distinct successor nodes as the
smaller one. While capturing isomorphic copies to avoid problems with node numbers in
Condition (i) is a technical detail, Condition (ii) is crucial. Thus we give an intuition in
the following example.

Example 5.8. First we observe a difference to term rewriting: We can distinguish the
same function symbol f by the sharing of its successor nodes. So an f which shares more
successor nodes can be smaller in the precedence than an f which shares fewer, as on the
left:

f

M
v

f

MM M
but

f

M
6w

f

MM M
.

On the right we try the opposite, embedding an f which shares less. This violates
Condition (ii). Intuitively we try here to embed one successor node in three distinct
successor nodes.

36

The second difference to term rewriting is that a function symbol f with larger arity
can embed the function symbol g with smaller arity and vice versa.

g

M
v

f

M
or

g

M
w

f

M
.

The left embedding does not hold any surprises—the function symbol f with arity 3
embeds the function symbol g with arity 1. The right embedding seems unusual: We
embed one distinct successor node on the left into one distinct successor node on the
right. Granted this successor node represents three arguments, but from the structure
we know these arguments to be, and to remain3, equal. Consequently Condition (ii) is
not violated.

Finally note that for two tops with the same function symbol f one may embed the
other although they are incomparable wrt. �. That is, for S, T ∈ Tops(f), with S 6� T
and T 6� S, still T v S may hold, as witnessed here:

fS :

M M
v

hU :

MM
v

f : T

M M
.

There is no restriction that forbids S v U and none for U v T . Hence by transitivity
of v we have to have S v T . Condition (ii) in Definition 5.7 only assures that there are
sufficiently many distinct successor nodes to embed the smaller Top. No restrictions on
the order of the successor nodes is presumed—as opposed to Plump’s [28], where the
order on Top has to be compatible with collapsing.

So far we considered the precedence of Tops. Now we want to extend this precedence to
an order on term graphs—an embedding relation vemb. Plump defines vemb by encoding
the arguments below the root into strings [28]. We write v[28]

emb to indicate his notion of
embedding. Through this the sharing information of nodes below direct arguments to
the root is lost. To clarify this, consider the following example given in [28].
Example 5.9. The following term graphs are mutually embedded in each other:

f

g

a

v[28]
emb

f

ga

a

and

f

g

a

w[28]
emb

f

ga

a

.

This mutual embedding is counter-intuitive. For us this is the starting point for a
new definition of embedding. This new definition should take sharing into account, i.e.
4 ⊆ vemb. Therefore we follow two main ideas: For one, the new definition is based on a
morphism between the two graphs as morphisms inherently are about finding structures.
Secondly the new definition treats the argument of a term graph as one graph. We start
with motivating the second idea.

3Due to the absence of explicit uncollapsing.

37

5.1 The Argument of a Term Graph

5.1 The Argument of a Term Graph
Essentially the question is: What is the argument of a term graph?

Example 5.10. Consider the following three term graphs.

f : 1

g : 2

a : 3

4

f : 1

g : 2 g : 3

a : 4

4

f : 1

g : 2 g : 3

a : 4 a : 5

.

We want to compute their argument(s). Now we have two options. For one, we could
consider the arguments as separate term graphs. Each of the three term graphs above
then has two distinct arguments—two as dictated by the arity of f:

g : 2

a : 3

,
g : 2

a : 3

 ,


g : 2

a : 4

,
g : 3

a : 4

 ,


g : 2

a : 4

,
g : 3

a : 5

 .

This is the equivalent to arguments in the term rewriting setting. Note that implicitly
the sharing information is still kept through the node numbers. On the other hand we
also could consider the arguments as one graph and get the following three argument
graphs for the three term graphs:

g : 2

a : 3

,
g : 2 g : 3

a : 4

,
g : 2

a : 4

g : 3

a : 5

.

By considering the argument of a term graph as one graph, we explicitly keep infor-
mation about shared nodes. One may also note the similarity to a graph rewrite rule
(cf. Definition 3.21), which is also one graph with two distinguished roots.

As our original goal is to keep information about sharing we prefer the second version:
one argument graph. However we also loose information: What are “roots” of the
argument graph?

Example 5.11. Consider the following term graph S1:

f : 1S1 :

g : 2

a : 3

with argument g : 2

a : 3

which is also
also argument of

f : 1 : S2

g : 2

a : 3

.

The information about the roots of the argument graph has been lost. To keep this
we extend the argument graph by remembering the roots of the argument: [2 , 3] for

38

5.1 The Argument of a Term Graph

the argument of S1 and [2 , 2] for the argument of S2. Strictly speaking 3 is not a root
as not every node is reachable from 3 (compare Definition 3.3). Hence we refer to the
roots of the argument graph as inlets.

We now formally define the notion of argument graph based on inlet graphs.

Definition 5.12. Let G = (N, succ, lab) be a term dag. An inlet graph, extends G with
an ordered sequence of nodes, inlets = [n1, . . . , nk], where n1, . . . , nk ∈ N .

The definition of sub-graph to inlet graphs extends in a natural way. We simply
consider all nodes reachable from inlets [n1, . . . , nk].

Definition 5.13. The sub-graph G�[n1, . . . , nk] of an inlet graph G = (N, succ, lab, inlets)
is G′ = (N ′, succ′, lab′, [n1, . . . , nk]), where N ′ = {n | ni ⇀∗ n, 1 6 i 6 k}, and the
domains of succG′ and labG′ are restricted to NG′ .

We can now use inlet graphs together with the definition of sub-graph to compute
the argument graph of a term graph: the root is deleted and the inlets of are the direct
successors of the original root.

Definition 5.14. The argument graph of a term graph T = (N, succ, lab), denoted by
arg(T), is an inlet graph (N, succ, lab, [rt(T)])�inlets where inlets = succ(rt(T)).

In this definition we already hid the construction of an inlet graph from a term graph T :
set inlets = rt(T). We illustrate argument graphs by an example.

Example 5.15. Reconsider Example 5.11. The argument graphs for S1 and S2 have the
same N = { 2 , 3 }, the same succ(2) = 3 and succ(3) = [], and the same lab(2) = g
and lab(3) = a. However, they are different in their inlets: for the left graph [2 , 3]
versus [2 , 2] for the right graph.

The next example of argument graph illustrates the argument of an argument of an
argument.

Example 5.16. The following graph

f : 1

g : 2

g : 3

g : 4

a : 5

has
inlets(arg(G)) = [2 , 3 , 4]

inlets(arg(arg((G)))) = [3 , 5 , 5]
inlets(arg(arg(arg((G))))) = [5]

.

By construction, if n is a root in an inlet graph then n ∈ inlets. The reverse does not
hold as witnessed by node 3 in Example 5.11

39

5.2 Embedding

5.2 Embedding
We now define an embedding relation on inlet graphs. It has a similar structure as
Definition 3.15, which defines a ∆-morphism between two term graphs.

We continually develop our definition of embedding throughout this section, but start
with giving an intuition.

Example 5.17. The following three graphs are embedded from the left to the right,
under the given precedence:

f : 1

a : 2 a : 3

wemb

g : A

a : B

wemb

f : I

a : II

with
precedence

f

M M
w

g

M
w

f

M
.

In a first attempt to define embedding we try to find a morphism from the embedded
“smaller” graph to the embedding “larger” graph—which will not work.

Definition 5.18 (first attempt). Let v be a precedence. We say that S is embedded
in T , denoted as S vemb T , if there exists a function m : S → T such that for all nodes
s ∈ S, we have

(i) TopS(s) v TopT (m(s)), and

(ii) if s ⇀S s
′ for some s′ ∈ S, then m(s) ⇀+

T m(s′) holds.

Condition (i) demands the decrease in the order v of the Top for every node. Condi-
tion (ii) demands that every path in the smaller graph can be simulated by a, potentially
larger, path in the larger graph. To illustrate the definition consider the following
example.

Example 5.19. The embedding given below is valid after Definition 5.18:

f : A

g : B

a : C

g : D

a : E

S :

vemb

f : 1

g : 2

a : 3

a : 4

: T

.

Here the morphism m : S → T satisfies both conditions: m(A) = 1 , m(B) = 2 =
m(D), and m(C) = 3 = m(E).

This embedding could be prohibited by demanding m to be injective. But demanding
injectivitiy prohibits to capture sharing in the embedding relation.

40

5.2 Embedding

Example 5.20. Embedding the smaller, i.e. more collapsed, S in T is not possible, as
can be seen next:

f : A

g : B g : C

a : D

S :

6vemb

f : 1

g : 2 g : 3

a : 4 a : 5

: T

.

We cannot map D to 4 and 5 .
The above Examples 5.19 and 5.20 demonstrate that a mapping from the embedded to

the embedding graph prohibits to take collapsing into account. But taking collapsing into
account was our aim. Thus in a second attempt we map from the “larger” embedding
graph to the “smaller” embedded graph.
Definition 5.21 (second attempt). Let v be a precedence. We say that S embeds T ,
denoted as S wemb T , if there exists a partial, surjective function m : S → T such that
for all nodes s in the domain of m:

(i) TopS(s) w TopT (m(s)), and

(ii) m(s) ⇀T m(s′) implies s ⇀+
S n
′ for some n′ ∈ {n | m(n) = m(s′)}.

Condition (i) is a straight-forward adaptation of Definition 5.18 ensuring that the
embedded node’s Top is smaller in the precedence. Condition (ii) is a bit more involved,
because m is not necessarily injective. In this case, the node s′ in m(s′) is not uniquely
determined, but element of the set of pre-images of s′, i.e. m−1(s′). Surjectivity ensures
that every node in T is embedded.
Example 5.22. Recall Example 5.20 , where we want to justify S vemb T . We map
m(2) = B and m(4) = D , and we have B = m(2) ⇀m(4) = D . But we also (have
to) map D = m(5), and have m(2) ⇀m(5), but clearly 2 6⇀ 5 . However, we already
have a witness in m−1(D) = { 4 , 5 }, i.e. n′ = 4 wrt. Definition 5.21 where 2 ⇀ 4 .

Both definitions of embedding are very permissive and do not take the order of the
arguments into account. Consider the next example, where the arguments are swapped,
but the embedding holds in both directions.
Example 5.23. The two term graphs representing the terms f(a, b) and f(b, a) are
mutually embedded:

f : 1

a : 2 b : 3

vemb
wemb

f : A

b : B a : C

.

From left to right we have the morphism m with m(1) = A , m(2) = B , and
m(3) = C . However, the inverse morphism m−1 fulfills the conditions too.

41

5.2 Embedding

This leads us to our third attempt where we also want to take the order of the arguments
into account. Informally speaking we want to preserve the relative order between the
nodes: if a node n is “left of” a node n′, m(n) should be “left of” m(n′) in the embedded
graph. In the following we describe requirements on this “left of”-relation, which we
write as �.

It is not sufficient to define � only on direct successors of some node. Put differently:
a local perspective is not sufficient. We have to take the successors of the successors into
account, as shown by the next example.

Example 5.24. We want to include the following embedding, with m(4) = B and
m(3) = C .

f : 1

g : 2

a : 3

b : 4 wemb

f : A

a : B b : C

.

Intuitively we have B � C , hence we need to compare 3 and 4 .

We start with a very liberal requirement on �, where a node n1 is left of a node n2, if
they have ancestors which are left of each other.

Definition 5.25 (first attempt). Let � be a partial order on nodes in an inlet graph.
Further � satisfies the following condition: if n1 � n2 then we have succ(n) =
[. . . , n′1, . . . , n′2, . . .], where n′1 ⇀∗ n1 and n′2 ⇀

∗ n2, for some n.

We investigate consequences of this definition and show two notorious cases, which
directly relate to anti-symmetry and transitivity. For this it is sufficient to consider the
special case of n1 = n′1 and n2 = n′2.

First we inspect the case for anti-symmetry with two distinct nodes n1 and n2, where
both n1 � n2 and n2 � n1 satisfy Definition 5.25, but n1 6= n2.

Corollary 5.26 (anti-symmetry). Consider two nodes n1, n2 with n1 6= n2, and a node n
with succ(n) = [n1, n2, n1]. If n1 � n2 and n2 � n1 this contradicts anti-symmetry by
the following counter-example:

n

n2

n1 .

Note that here Pos(n1) = {1, 3} and Pos(n2) = {2}, and 1 <lex 2 <lex 3.

Thus when fixing some order � on nodes either n1 � n2 or n2 � n1, or n1 and n2
are incomparable.

Now we consider the second case. The key observation here is that a node n3 can be a
successor and a “neighbour” of another node n2, i.e. n2 � n3 satisfy Definition 5.25, and
n2 ⇀ n3.

42

5.2 Embedding

Corollary 5.27. By succ(n1) = [n2, n3], we allow n2 � n3 and n2 ⇀ n3 as witnessed
by the following example:

n1

n2

n3

�

.

Symmetrically a node n2 can be a ancestor and a “neighbour” of another node n5, i.e.
n5 � n2 satisfy Definition 5.25, and n2 ⇀ n5.

Corollary 5.28. By succ(n4) = [n5, n2], we allow n5 � n2, and n2 ⇀ n5 as witnessed
by the following example:

n4

n2

n5 �

.

These two corollaries show that a node can be either an successor or an ancestor and
still be left of a neighbouring node. That is, there is no relation between the successor
and the �-relation. We combine these two observations and investigate transitivity. For
the combination note that the node numbers are kept from the above examples and
additionally the colors may aid.

Corollary 5.29 (transitivity). If n2 � n3 and n5 � n2 then by transitivity of � we
get n5 � n3. Thus by Definition 5.25, succ(n2) = [. . . , n5, . . . , n3, . . .] has to hold. The
following counter-example contradicts this as succ(n2) = [n3, n5]:

·

n1

n2

n3

n4

n5

�
�

.

As before when fixing some order� on nodes either n3 � n5 or n5 � n2 are prohibited.
From this we conclude that we need to exclude situations, where a nodes is at the same
time a neighbour and reachable from another node. That is, we only compare nodes
which are parallel.

For a formal description of “left of”, we employ positions (cf. Definition 3.11). For a
inlet graph G with inletsG, the base case is adapted slightly: PosG(n) := {i} if n is on
ith position in inletsG.

Definition 5.30. Let p and q be positions. Then p is left—or above—of q, if p =
p1 · · · pk <lex q1 · · · ql = q, i.e. pi = qi for 1 6 i 6 j and j = k < l or pj < qj .

43

5.2 Embedding

We now have to extend this comparison from positions to nodes. This entails on the
one hand an intra-node comparison which finds the smallest position within a node. Then
an inter-node comparison comparing the smallest positions of two nodes. This solves the
problem detected in Corollary 5.26—by fixing one as the primary. We solve the problem
described in Corollary 5.29 by restricting the comparison to parallel nodes.

Definition 5.31. Let G be a inlet graph, n, n′ ∈ G, and suppose n and n′ are parallel.
We define a partial order �G on the parallel nodes in G. Further suppose p ∈ Pos(n) is
minimal wrt. <lex and q ∈ Pos(n′) is minimal wrt. <lex. Then n�G n

′ if p <lex q.

For proving transitivity of vemb, we require the following lemma on �.

Lemma 5.32. Let G be a inlet graph. For two distinct nodes n1, n2 in G, ¬(n1 � n2)
implies (n1 ⇀

+ n2) ∨ (n2 ⇀
+ n1) or (n2 � n1).

Proof. By definition if n1 � n2 then n1, n2 are mutually unreachable, and by totality
of � on parallel nodes.

We develop Definition 5.21 further to the final version of embedding.

Definition 5.33 (final). Let v be a precedence. We say that S embeds T , denoted as
S wemb T , if there exists a partial, surjective function m : S → T such that for all nodes
s in the domain of m:

(i) TopT (m(s)) v TopS(s), and

(ii) m(s) ⇀T m(s′) implies s ⇀+
S n
′ for some n′ ∈ {n | m(n) = m(s′)}, and

(iii) m(s)�T m(s′) implies either
(a) that none of the nodes in the pre-image of m(s′) is parallel to s, or
(b) there exists n′ ∈ {n | m(n) = m(s′)} such that s�S n

′.

We next illustrate the definition with a couple of examples. Recall our original
motivating Example 5.23. With the final definition of embedding, the two term graphs
are not mutually embedded per se—embedding now depends on v.

Example 5.34. For the following two term graphs we have the following morphism:
m(1) = A , m(2) = B , m(3) = C , and m(4) = D . Here we have B � C but 2

and 3 are not parallel.

f : 1

g : 2

g : 3

a : 4

wemb

f : A

g : B g : C

a : D

44

5.2 Embedding

Still even with � the two graphs below are mutually embedded. Here we have neither
2 � 3 nor B � C , so Condition (iii) holds trivially in both directions.

f : 1

g : 2

a : 3

wemb
vemb

f : A

g : B

a : C

One of the main challenges of proving transitivity is the non-injectivity of morphisms.
For the proof we introduce the following notation. Given a morphism mXY : X → Y .
Then m−1

XY : Y → P(X), and

m−1
XY (y) = {x ∈ X | mXY (x) = y} .

By definition then

m−1
XY (mXY (x)) = {x′ ∈ X | mXY (x′) = mXY (x)} .

Lemma 5.35. The order vemb is transitive.

Proof. Assume term graphs S, T, U . We show that S wemb T (assumption ASwembT) and
T wemb U (assumption ATwembU) imply S wemb U . Therefore we construct a morphism
mSU : S → U and show that mSU fulfills the conditions in Definition 5.33.

By ATwembU we have a surjective morphism mTU : T → U and by ASwembT we have a
surjective morphism mST : S → T . We set mSU(s) := mTU(mST(s)). By surjectivity of
mST and mTU, also mSU is surjective.

We show next that mSU fulfills Definition 5.33(i):

TopS(s) w TopU (mSU(s))

By definition TopU (mSU(s)) = TopU (mTU(mST(s))). By ASwembT, TopS(s) w TopT (mST(s))
and by ATwembU, for all mTU(t) ∈ U we have TopT (t) w TopU (mTU(t)), in particular for
t = mST(s), hence TopT (mST(s)) w TopU (mTU(mST(s))). By transitivity of w we conclude
Condition (i).

Next, we need to show that mSU fulfills Definition 5.33(ii):

if mSU(s) ⇀U mSU(s′) then s ⇀+
S n where n ∈ m−1

SU(mSU(s′))

By definition mTU(mST(s)) ⇀U mTU(mSU(s′)) and by ATwembU, Condition (ii), we get
mST(s) ⇀l

T n2, where n2 ∈ m−1
TU(mTU(mST(s′))) for l ≥ 1. We show s ⇀+

S n where n ∈
m−1

SU(mSU(s′)) by induction on l.

Base Case. l = 1. By surjectivity we know there is a n3 ∈ S such that mST(n3) = n2.
Then by ASwembT, Condition (ii), we get s ⇀k

S n4 for n4 ∈ m−1
ST(mST(n3)) and k > 1.

Then by mST(n4) = mST(n3) = n2 and mTU(n2) = mTU(mST(s′)) we conclude
mTU(mST(n4)) = mTU(mST(s′)) and thus n4 ∈ m−1

SU(mSU(s′)).

45

5.2 Embedding

Step Case. mST(s) ⇀l
T n3 ⇀T n2. By induction hypothesis we get s ⇀+

T n4 for
n4 ∈ m−1

ST(n3). By surjectivity we have a node n5 such that mST(n5) = n2.
Combining these two facts we get mST(n3) = mST(n4) ⇀T mST(n5). With the
same reasoning as in the base case we get n4 ⇀

+
S n6 where n6 ∈ m−1

ST(mST(n5)).
Hence mST(m6) = mST(n5), with mST(n5) = n2 and mTU(n2) = mTU(mST(s′)), we
get n6 ∈ m−1

SU(mSU(s′)).

Finally, we need to show mSU fulfills Definition 5.33(iii). Therefore, we state Condi-
tion (a) more formally: none of the nodes in the pre-image of m(s′), i.e. m−1(m(s′)), is
parallel to s, i.e. none of the nodes in m−1(m(s′)) is mutually unreachable from/to s, i.e.
∀n ∈ m−1(m(s′)) either n ⇀+

S s or s ⇀+
S n. Hence we have to show:

if mSU(s)� mSU(s′) then either (α)
∀n ∈ m−1

SU(mSU(s′)) either n ⇀+
S s or s ⇀+

S n, or (β)
∃n ∈ m−1

SU(mSU(s′)) with s� n . (γ)

We have to show α⇒ β ∨ γ. Therefore we show that α⇒ ¬β ⇒ γ.
For ¬β we assume there exists a n2 ∈ m−1

SU(mSU(s′)) so that ¬(n2 ⇀
+
S s) and ¬(s ⇀+

S

n2). Then by Lemma 5.32 we know s � n2 or n2 � s. The former shows γ, for the
latter we derive a contradiction.

By α and definition we know mTU(mST((s)) � mTU(mST((s′)) and then by ATwembU
we can conclude either ∀n3 ∈ m−1

TU(mSU(s′)) either n3 ⇀
+
S mST(s) or mST(s) ⇀+

S n3, or
∃n3 ∈ m−1

TU(mSU(s′)) with mST(s)� n3. By surjectivity we know that there is a n4 such
that mST(n4) = n3, and mTU(n3) = mSU(s′) = n2.

• For mST(s) ⇀+
S mST(n4) by Condition (ii) we have s ⇀+

S n5 and n5 ∈ m−1
ST(mST(n4)).

Hence mST(m5) = mST(n4) = n3, and mTU(mST(n5)) = mSU(s′) = n2. to ¬β.

• For mST(n4) ⇀+
S mST(s) by Condition (ii) we have n4 ⇀

+
S n6 and n6 ∈ m−1

ST(mST(s)).
If n6 = s we have to ¬β. If n6 6= s we have ¬(n3 ⇀

+
S s) but by Lemma 5.32 we

also have to ¬β.

• For mST(s)� n3 we use ASwembT to derive a contradiction to α.

We conclude this section with a comparison between the embedding relation for terms
and our embedding relation for term graphs. Not unexpectedly the connection is very
weak: term(T) vemb term(S) does not imply T vemb S. As a counter example consider
the embedding term(T) = f(g(a), a) vemb f(g(a), g(a)) = term(S). For S the successors
may be shared:

f : 1T :

g : 2

a : 3

6vemb

f : A : S

g : D

a : C

,
f

M M
w

f

M
.

46

5.3 Proof

Due to the order on Tops on the right we have T 6vemb S. For a different representation
of term(S), i.e. if node D were not shared, the embedding of term graphs would be
possible. The reverse, T vemb S implies term(T) vemb term(S), does not hold either.
This is easily seen as Tops with function symbols of larger arity can be smaller in the
precedence Tops with function symbols of smaller arity.

5.3 Proof
Now we can move on to the main proof of this chapter: Kruskal’s Tree Theorem [19]
for term graphs. It closely follows the proof for the term setting in [22], which in
turn follows the minimal bad sequence argument of Nash-Williams [24]: assuming the
existence of a minimal “bad” infinite sequence, an even smaller “bad” infinite sequence is
constructed—contradicting minimality.

The most important insight concerns the arguments of a term graph—or rather the
argument. For a term structure we have several sub-terms as arguments. For a term
graph structure it is beneficial to regard the arguments as only a single argument graph.
This preserves sharing of nodes. Moreover a single argument simplifies the proof as
extending the order to sequences, Higman’s Lemma [15], can be omitted.
Theorem 5.36. If v is a wqo on Tops(F), then vemb is a wqo on ground term graphs
over F .
Proof. By definition vemb is wqo if for every infinite sequence exist indices i, j with
1 6 i < j such that Ti vemb Tj for term graphs Ti, Tj . That is, every infinite sequence
is good. We construct a minimal bad sequence of term graphs T in the following way.
Assume we picked (canonical) term graphs T1, . . . , Tn−1. We pick the (canonical) term
graph Tn, which is minimal with respect to its size |Tn|, such that there are bad sequences
that start with T1, . . . , Tn.

Let Gi be the argument graph of the ith term graph Ti. We collect in G the arguments
of all term graphs in T, i.e. G =

⋃
i>1Gi.

Now we first prove that vemb is a wqo on G. For a contradiction, we assume G admits
a bad sequence H. We pick some Gk ∈ G with k > 1. In G′ we collect all argument
graphs up to Gk, i.e. G′ =

⋃k
i>1Gi. The set G′ is finite, hence there exists an index l > 1,

such that for all Hi with i > l we have that Hi ∈ G but Hi 6∈ G′. We write H>l for the
sequence H starting at index l. Now consider the sequence T1, . . . , Tk−1, Gk,H>l. By
minimality of T this is a good sequence. So we try to find Hi vemb Hj . We distinguish
on i, j:
Case. T1, . . . , Tk−1︸ ︷︷ ︸

i,j

, Gk,H>l. For 1 6 i < j 6 k − 1, we have Hi = Ti vemb Tj = Hj ,

which contradicts the badness of T.

Case. T1, . . . , Tk−1︸ ︷︷ ︸
i

, Gk︸︷︷︸
j

,H>l. For 1 6 i 6 k − 1 and j = k, we have Hi = Ti vemb Gk =

Hj and Gk vemb Tk, but then, by transitivity, Ti vemb Tj , which contradicts the
badness of T.

47

5.3 Proof

Case. T1, . . . , Tk−1︸ ︷︷ ︸
i

, Gk,H>l︸︷︷︸
j

. For 1 6 i 6 k − 1 and j > l, we have Hj 6∈ G′ by con-

struction, but Hj = Gm vemb Tm,m > k and Hi = Ti vemb Gm = Hj hence by
transitivity Ti vemb Tm, which contradicts the badness of T.

Case. T1, . . . , Tk−1, Gk,H>l︸ ︷︷ ︸
i,j

. Hence for some 1 6 i < j, where i, j 6∈ {2, . . . , l − 1}, we

have Hi vemb Hj , which contradicts the badness of H.

We conclude H is a good sequence and vemb is wqo on G.
By assumption v is a wqo on Tops(F). Let f be the sequence of Tops of T. By

Lemma 2.6 we know that f contains a chain fφ, i.e. fφi v fφi+1 for all i > 1. We proved
vemb to be a wqo on G. Hence we have Gφi vemb Gφj for some 1 6 i < j.

It remains to be shown, that fφi v fφj and Gφi vemb Gφj implies Tφi vemb Tφj . The
plan is the following: We have a morphism from Gφi to Gφj , and two Tops fφi and
fφj . From that we construct a morphism from Tφi to Tφj First we construct Tφi , and
analogously Tφj , from fφi = (ni, labfi , succfi) and Gφi = (NGi , labGi , succGi , inletsGi). We
have ni 6∈ Gφi , i.e. NGi ∩ {ni} = ∅. Then Tφi = (NTi , labTi , succTi) where

• NTi := NGi ∪ {ni},

• labTi := labGi ∪ {labTi(ni) = labfi(ni)}, and

• succTi := succGi ∪ {succTi(ni) = inletsGi}.

From Gφi vemb Gφj , we obtain a morphism mG : Gφj → Gφi . We construct the
morphism m : Tφj → Tφi , where m(nj) = ni and m(n) = mG(n) for the remaining
n ∈ Gφj . It remains to be shown that m fulfills Definition 5.33. Surjectivity of m follows
directly from the surjectivity of mG. Condition (i) holds for all nodes in mG, and by
fφi v fφj also for rt(Tφj) = nj . For Condition (ii) we have to show: If m(nj) ⇀Tφi

n′i = m(n′j) then nj ⇀
+ n′ for some n′ ∈ m−1(m(n′j)). We show the stronger nj ⇀+ n′j

and trivially n′j ∈ m−1(m(n′j)). By definition n′i ∈ inletsGi and hence also n′i ∈ Gi. By
surjectivity of mG exist mG(n′j) = n′i. It remains to show that nj ⇀+ n′j . By definition
nj ⇀ uj , where uj ∈ inletsGj . By definition of argument graph, all nodes in Gj are
reachable from nodes in inletsGj , and in particular nj ⇀ uj ⇀

∗ n′j . For Condition (iii)
note that � in is not affected by constructing Tφi and Tφj as Pos(ni) = Pos(nj) = {ε}.

Hence, Tφi vemb Tφj , which contradicts the badness of T.

This concludes the proof and the chapter, where transferred the definitions in [28] to
our formalism of term graphs. Inspired by [28] we defined an embedding relation. Then
we re-proved Kruskal’s Tree Theorem, but as opposed to [28], which uses an encoding
to terms, we prove it directly for term graphs. Thereby it was beneficial to view the
argument of a term graph again as one graph with inlets. In the next chapter we will
use Kruskal’s Tree Theorem for term graphs to prove a simplification order well-founded.

48

6 Termination of Term Graph Rewriting

In the previous chapter we developed an embedding relation for term graphs. Based on
this embedding relation we now give a definition for simplification orders for term graphs
in Section 6.1. We then prove simplification orders to be well-founded using the main
result of the previous chapter. Next we define a simplification order: a lexicographic
path order on term graphs. There are several challenges attached. For one we have to
restrict the set of the term graphs to term graphs with only parallel nodes. On the other
hand, as opposed to term rewriting, it is not sufficient to find an order on the rewrite
rules. We highlight this challenge of automation in Section 6.2, where we give two simple
scenarios of non-termination.

6.1 Lexicographic Path Order
As a first step we transfer the definition of simplification orders from the term rewrite
setting, cf. Section 2.2, to the term graph rewriting setting. We adopt the following
definition from [28, Definition 12].

Definition 6.1. Let vemb be the embedding relation induced by the underlying well-quasi
ordered precedence v. A transitive relation ≺ is a simplification order, if

(i) @emb ⊆ ≺, and

(ii) for all S and T , if S vemb T and T vemb S then S 6≺ T .

Condition (i) directly compares to the term rewrite setting. Condition (ii) is required
because vemb is not anti-symmetric in general—even if the underlying precedence is
anti-symmetric. That is, for term graphs, S vemb T and T vemb S does not imply S ∼= T .
A direct consequence of Condition (ii) is that simplification orders are irreflexive. Due to
Kruskal’s Tree Theorem for term graphs we obtain the following result, where the proof
is originally from [28, Theorem 13].

Theorem 6.2. Every simplification order ≺ is well-founded.

Proof. For ≺ we have by definition an embedding relation @emb, such that @emb ⊆ ≺.
Due to Kruskal’s Tree Theorem for term graphs 5.36, vemb is a wqo. We assume an
infinite sequence S1 � S2 � . . . As vemb is a wqo, we have Si vemb Sj for i < j. On the
other hand we have Si � Si+1 � . . . � Sj , and by transitivity Si � Sj . By Definition 6.1
Condition (ii) and Si � Sj , not Si vemb Sj and Sj vemb Si. Hence Si @emb Sj , and by
assumption we have Si ≺ Sj . We derived a contradiction. Thus ≺ is well-founded.

49

6.1 Lexicographic Path Order

In the next step we adapt the lexicographic path order (LPO) from term rewriting
to term graph rewriting. It is natural to define LPO on inlet graphs in the setting of
this thesis. The term graph case is trivial as a term graph S is an inlet graph with
inletsS = [rt(S)].

Definition 6.3. Let v be a well-quasi ordered precedence. We write @lex for the
lexicographic extension of @. Let S and T be inlet graphs with inletsS = [s1, . . . , sk] and
inletsT = [t1, . . . , tl], where si, sj and ti, tj are parallel for si 6= sj and ti 6= tj . Then
T <lpo S if one of the following holds

(i) T 6lpo S�[si1 , . . . , sik′] for some 1 6 i1 < . . . < ik′ 6 k, or

(ii) [Top(t1), . . . ,Top(tl)] @lex [Top(s1), . . . ,Top(sk)] and arg(T) <lpo S, or

(iii) [Top(t1), . . . ,Top(tl)] = [Top(s1), . . . ,Top(sk)] and arg(T) <lpo arg(S).

The next examples demonstrate our LPO. We start with Example 5.23, which motivated
the importance of ordering successor nodes.

Example 6.4. Given the precedence a @ b we can compare the two term graphs:

f : 1

a : 2 b : 3

<lpo

f : A

b : B a : C

.

To compare the term graphs with <lpo we first use (iii) and compare the argument
graphs. Then we compare their respective inlets lexicographically, i.e. [Top(2),Top(3)] @lex
[Top(B),Top(C)] using (ii).

Next recall Example 5.1—Toyama’s example. It is non-terminating in the term rewrite
setting, and served as motivation example in Chapter 5.

Example 6.5. Given the following precedence:

f

MM M
A

f

M
, a A b .

We can compare the graphs in the following rewrite sequence with >lpo as follows:

f

ba g

a b

>lpo

f

g

a b

>lpo
f

aa
.

For the first step we use (ii) to begin. To compare the argument we then can project the
corresponding sub-graph with (i). For the second step we use case (iii) followed by (i)
again.

50

6.1 Lexicographic Path Order

As a final example consider the following two term graphs.

Example 6.6. Given the following precedence:

f

M M
A

f

M
.

We can compare the two term graphs in the following by first using (ii) and then (i).

f

g

a

a >lpo
f

a
.

To prove that <lpo is a simplification order, we have to prove that <lpo contains @emb.
Thereby it important to note that <lpo requires that nodes are parallel within inlets.
That means, we can inductively step through an inlet graph with inlets forming a level in
the inlet graph.

Theorem 6.7. The order <lpo is a simplification order.

Proof. To show that <lpo is a simplification order, we need to show that it satisfies both
conditions of show Definition 6.1. We start by showing Condition (i): @emb ⊆ <lpo. For
inlet graphs S and T with inletsS = [s1, . . . , sk] and inletsT = [t1, . . . , tl], we have to show
that S Aemb T implies S >lpo T . We continue by induction on |S|+ |T |. By S Aemb T we
know there is a morphism m : S → T satisfying the conditions in Definition 5.33 denoted
by m(i)-(iii). By surjectivity of m, and m(ii), we have si ⇀+ s′j such that m(s′j) = tj for
1 ≤ j ≤ l. By Definition 6.3(i) it suffices to show S�[s′1, . . . , s′l] >lpo T �[t1, . . . , tl]. Now
by m(i) and m(iii) we know [Top(t1), . . . ,Top(tl)] vlex [Top(s′1), . . . ,Top(s′l)]. Hence, by
(ii), (iii) it suffices to show arg(S�[s′1, . . . , s′l]) >lpo arg(T �[t1, . . . , tl]). By definition we
have to show S�succ(s′1) · · · succ(s′l) >lpo T �succ(t1) · · · succ(tl). As all successor nodes in
S, T are parallel, we conclude the proof by induction hypothesis.

For Condition (ii) it suffices to observe that for term graphs with parallel nodes
S vemb T and T vemb S implies S ∼= T , and as <lpo is irreflexive S 6<lpo T and vice
versa.

Alternatively we potentially could have used the results in [14] to prove the well-
foundedness of <lpo. There the presented techniques are applied to graphs. However, the
notion of graphs is much more liberal than our definition, and thus is not immediately
transferable.

It is important to note that our definition of <lpo does only work on a special shape of
inlet graphs: inlet graphs which only have parallel nodes in the successors, i.e. for all
n ∈ G and for all ni, nj ∈ succ(n), ni and nj are parallel. This restriction is motivated
by the following example.

51

6.1 Lexicographic Path Order

Example 6.8. Given the precedence f A g and a A f. For S and T below we have
S Aemb T , but S 6>lpo T .

S : h

f

a

Aemb

h

g

a

: T

In the recursive case we have to compare the inlets [f, a] with the inlets [a, g]—but
a A f. On a side note this may be possible with a multi-set comparison.

Finally consider the embedding relation again. As opposed to the term rewrite setting
in the graph rewrite setting it is not sufficient to find an order on the rules to conclude
termination of every instance.

Example 6.9. Consider a term graph rewrite system G with the following rule on the
left, which we can compare with Aemb on the right:

f

a a
⇒

f

a

f

a a
Aemb

f

a

But we still may get an infinite rewrite sequence:

f

a a
⇒G

f

a
⇒G

f

a
⇒G . . .

It is important to note that this infinite rewrite sequence is not bad wrt. vemb as we
can see next:

f

a a
,

f

a
vemb

f

a
, . . .

This problem is not caused by our definition of embedding and also occurs in [28].
Rather the reason is that from an order on the rules, we cannot conclude an order on all
the rewrite steps. Still we can follow Plump [28, Theorem 25] and find an order on every
rewrite step—and not solely the rewrite rules.

Here we restrict our attention to ⇒G and do not incorporate any explicit form of
collapsing. This is easily justified as �, <, �!, and �!+ are all contained in embedding
and hence in >lpo.

Theorem 6.10. Given a simplification order >lpo. Then ⇒G is terminating if S ⇒ T
implies S >lpo T and all ground term graphs S and T .

52

6.2 Non-Termination

Proof. Assume an infinite sequence S1 ⇒G S2 ⇒G . . . By assumption we get S1 >lpo
S2 >lpo S3 >lpo S4 . . . But >lpo is a simplification order, and we have Aemb ⊆ >lpo.
Hence we can select Si1 >lpo Si2 >lpo Si3 >lpo Si4 . . . As >lpo is well-founded, we derive a
contradiction.

Unfortunately we cannot conclude an order on every rewrite step from an order on
the rewrite rules. Here the problem lies in the definition of context and substitution for
graph rewriting—two topics we will briefly touch in the next section.

6.2 Non-Termination
In this section we present some rather straight-forward results on non-termination. Here
we loosely relate two scenarios of non-termination to closure under substitution and closure
under context. Both concepts, context and substitution, are not so straight-forward for
term graph rewriting.

We start with substitution and the notion of instance. In the term rewrite setting, if a
right-hand side of a rule is an instance of a left-hand side we trivially have non-termination.
This transfers to the graph rewrite setting—but additionally collapsing has to be taken
into account.

Example 6.11. Consider the following graph rewrite system G, which is very similar to
Example 6.9:

f

a x
⇒

f

x
.

We can easily find a non-terminating rewrite sequence, because the rewrite rule
expresses collapsing for the following term graph:

f

a a
⇒G

f

a
⇒G

f

a
⇒G . . .

Intuitively we can find an infinite rewrite sequence if we find some instance of a term
graph rewrite rule, such that the instance of the left-hand side collapses to the instance
of the right-hand side. This explains why we have to compare all ground instances in
Theorem 6.10. We define a mapping from variables in a term graph to ground term
graphs.

Definition 6.12. Let σ : Var(S)→ T G(F ,V). For {n1, . . . , nk} ∈ Var(S) ∩ dom(σ) we
define Sσ as Sk+1 inductively:

S1 := S

Si+1 := (Si ⊕ σ(ni))[rt(σ(ni))← ni]

Here we assume NSi ∩Nσ(ni) = ∅ and delete ni from Si+1.

53

6.2 Non-Termination

We then arrive at the following straight-forward lemma, which indicates non termination
for a term graph rewrite system.

Lemma 6.13. If for L⇒ R ∈ G and σ : Var(L) → T G(F ,V) we have Lσ < Rσ, then
there exists an infinite rewrite sequence.

Proof. We have m1 : L→V Lσ and m2 : Lσ → Rσ. By transitivity, and Var(R) ⊆ Var(L),
we have a morphism m : L→V Rσ, hence L matches Rσ giving rise to the infinite rewrite
sequence Lσ ⇒ Rσ ⇒ Rσ . . .

With respect to the size of S and T , we observe that S � T guarantees |S| > |T |, as
m : S → T is injective. But even if |L| > |R|, we cannot be conclude that for S ⇒G T
we have |S| > |T |. For every step we have only a constant growth of |T |, as we can see in
Lemma 3.33, but no determined decrease. We conclude that the notion of instance is
not as clear cut for term graphs as for terms. If S collapses to T , S < T , is T then an
instance of S? And vice versa—is T and instance of S?

Similarly the notion of context is not clear for term graph rewriting. That is, a node
can at the same time be part of the context and of the matched left-hand side. Put
differently, the node is reachable from the redex node and a node, which is not necessarily
above the redex node.

Example 6.14. Consider the following GRS G, where all rules L ⇒ R are left-linear,
Var(L) = Var(R), and |L| > |R|.

f

g

x

⇒
f

x
,

h

f g

0 x

⇒

h

f

g

x

.

This allows the following infinite rewrite sequence:

h

f

g

0

⇒G

h

f g

0

⇒G

h

f

g

0

⇒G . . .

The problem here is that some kind of uncollapsing takes place. The shared node g
stays. The reasons is, that g is at the same time part of the left-hand side and the
context. The only node, which is guaranteed to not be part of the context is the root of
the left-hand side. We see that the context may be affected by the rewrite step—raising
the question whether it really is only a context?

54

6.2 Non-Termination

With this two open questions we conclude the chapter on termination and non-
termination of term graph rewriting. We will revisit termination in the next chapter on
related work—together with work on different representation of term graphs, confluence,
modularity, and memoisation.

55

7 Related Work

In this chapter we present related work whereby we understand related in a broad sense.
We present general results from the literature on graph rewriting where the main focus lies
on acyclic term graphs. However there are many different notions of term graphs and we
give an overview over these notions in Section 7.1. Then we look at results on termination
in Section 7.2, and at results for confluence in Section 7.3. We continue with results on
modularity in Section 7.4. In the final Section 7.5 we show the difference between sharing
nodes and sharing computation and present two formalisms which explicitly incorporate
memoisation in term graph rewriting.

7.1 Representations of Term Graphs
Term graphs come in many different flavours. This section presents some of these flavours,
i.e. alternative definitions of term graphs. One of the most distinct differences is whether
a term graph is acyclic or not. We first describe acyclic term graphs and then we look at
definitions, which allow for cyclic term graphs.

The acyclic term graphs of Plump in [28, 29, 30] and Rao [31, 32, 33] are conceptually
very similar to our setting. Term graphs are defined on the basis of hyper-graphs.

Definition 7.1. A hyper-graph is of the form G = (NG, EG, labG, attG), where NG is a
finite set of nodes, EG is a finite set of hyper-edges, labG : EG → F and attG : EG → N∗G
assigns a string of nodes to a hyper-edge. For each edge e ∈ EG, the length of attG(e) is
1 + ar(labG((e)).

Given an edge e with att(e) = n ·n1 · · ·nk, then node n is the result node and n1 · · ·nk
are the argument nodes. A hyper-graph S is a term graph if there is a node rt(S) from
which all nodes are reachable, if S is acyclic, and each node is the result node of a unique
edge.

Example 7.2. Two term graphs based on hyper-graphs are shown next. The right term
graph is a collapsed version of the left term graph, as indicated by collapsing (�) lifted
to hyper-graphs:

f

g g

a

�

f

g

a

.

56

7.1 Representations of Term Graphs

Term graph rewriting on hyper-graphs is defined very similarly to our setting presented
in Chapter 3: we find a morphism and redirect the edges appropriately followed by
collecting only reachable nodes. With hyper-graphs usually also an explicit collapse
relation is added to the rewrite relation by union.

Another acyclic formalism is non-copying term rewriting. Non-copying term rewriting
is introduced by Kurihara and Ohuchi in [20]. It is a term-based formalism for graph
rewriting. For an infinite set of marks M the signature F is extended to F∗ = {fµ | f ∈
F , µ ∈ M} and V to V∗ = {xµ | f ∈ V, µ ∈ M}. Terms are then built over T (F∗,V∗)
and called marked terms. A sub-set of marked terms are well-marked terms. A term is
well-marked if all sub-terms have the same mark if and only if the sub-terms are identical.
Well-marked terms directly correspond to term graphs.

Example 7.3. The two terms a1 and a1 are shared in the well-marked term f0(a1, a1).

The rewriting relation is defined based on the term rewriting relation. There is an
additional condition which enforces that every shared sub-term, i.e. sub-terms marked
the same way, are replaced simultaneously. This is achieved by marking the rules. For
the lhs the mark is determined by the matching, for the rhs no restriction is imposed.
This allows to re-use marks from the term and thereby collapse implicitly.

Both, hyper-graphs and well-marked terms, are close to our notion of term graphs:
they are acyclic and correspond to first-order terms. We chose our formalism as we were
most familiar with it. Moreover the underlying data structure of graphs, as opposed to
hyper-graphs or marked terms, is intuitive to start with. In some settings hyper-graphs
and well-marked terms are more intuitive, e.g. a Top from Definition 5.3 is a hyper-edge
in the hyper-graph setting.

Some authors, e.g. Ariola et al [1], Barendregt et al [7], and Barendsen [8] distinguish
between horizontal sharing, i.e. graphs sharing common sub-graphs, and vertical sharing,
i.e. graphs with cycles. So far we have only taken horizontal sharing into account. Now
we want to present some formalisms which incorporate vertical sharing:

One of the most influential works is by Barendregt et al [7]. Their formalism does
incorporate cycles, and also does not require a unique root from which all nodes are
reachable. Their following definition gives a linear notion for graphs. Shared sub-graphs
are identified by identifiers x or y.

Definition 7.4. Let f ∈ F and each identifier must exactly occur once in the context of
identifier : f(node, . . . , node):

graph := node | node + graph
node := f(node, . . . , node) | identifier | identifier : f(node, . . . , node) .

To illustrate the definition with some examples:

57

7.1 Representations of Term Graphs

Example 7.5. The graphs g(f(x : a), x), f(x : a) + h(x) and f(x : g(a, f(x))), are depicted
next:

g

f
a

f h
a

g

a f .

The rewriting relation is defined similarly to our setting: a morphism is found, the
edges are redirected, and unreachable nodes are discarded. Most notable is the restriction
to left-linear rules.

Ariola et al [1] and Barendsen [8] rely on a formalism that is based on terms and
equations. Underlying their graph specification is a set of node specifications.

Definition 7.6. A graph specification S is a pair, S = (α, {α1 = t1, . . . , αn = tn}), where
the αi are pairwise disjoint node variables N and ti ∈ T (F ,V ∪ N) for 1 6 i 6 n. The
node α is a distinguished node in {α1, . . . , αn} and the root of the graph. The equations
αi = ti are called node specifications.

Example 7.7. We first draw three term graphs, where 1 , 2 , 3 , and 4 are node
variables, and then give their graph specification:

1 : f

2 : g(a)
,

1 : f

2 : g

3 : a

,

1 : f

2 : g 3 : g

4 : a

.

The graph specification for the left graph is (1 , { 1 = f(2 , 2), 2 = g(a)}). The
graph specification for the graph in the middle is (1 , { 1 = f(2 , 2), 2 = g(3), 3 = a}).
Finally the graph specification for the right graph is (1 , { 1 = f(2 , 3), 2 = g(4), 3 =
g(4), 4 = a}).

In the second example we see how we can represent a cyclic term graph.

Example 7.8. A graph may also be cyclic, which can be seen next, where again 1 and
2 are node variables:

1 : f

2 : a .

The corresponding graph specification is (1 , { 1 = f(1 , 2), 2 = a}).

Each graph specification can be transformed into a canonical graph specification.
Therefore one transforms each node specification to the form x0 = f(x1, . . . xk) where

58

7.2 Termination

x0 . . . xk ∈ V ∪N . For example, the graph specification (0 , { 0 = f(g(x), 1), 1 = 0 })
is transformed into (0 , { 0 = f(2 , 0), 2 = g(x)}).

We presented these different representations to give an impression on the wealth of
notions of term graphs. We now move on to another topic, which already received some
attention in this thesis: termination of term graph rewriting.

7.2 Termination
After presenting our lexicographic path order for term graphs in Chapter 6, we now want
to look at further results for termination and techniques to show termination.

We start by re-stating results by Plump [29, 30], which are based on acyclic hyper-
graphs. The first result has been mentioned before: every graph rewrite step can be
simulated by k term rewrite steps—but not vice versa. Now we also incorporate collapsing.

Lemma 7.9. Let G be a GRS. If S ⇒G ∪ � T , then term(S) →k
R(G) term(T), where

k > 0.

Proof. By assumption we have either S ⇒ T or S � T . The first case follows by
Lemma 4.1. The second case follows by Lemma 3.38.

The result relies on a graph rewrite relation ⇒G ∪ �. With Chapter 4 we can transfer
this result to other combinations. A direct consequence of Lemma 7.9 of is preservation
of non-termination.

Lemma 7.10. Let R be a TRS and G(R) the corresponding GRS. If →R is terminating,
then ⇒G(R) ∪ � is terminating.

Proof. The proof is based on [30] and follows directly from Lemma 4.1 and the well-
foundedness of �. By contra-position, we assume that ⇒G ∪ � is not terminating for a
graph rewrite system G. Hence there exists an infinite sequence S1 ⇒G ∪ � S2 ⇒G ∪ � . . .
By Lemma 7.9 we have the infinite term rewrite sequence term(S1)→∗R term(S2)→∗R . . .
for the implied term rewrite system R(G) and →R is not terminating.

This implies that techniques to show termination of term rewriting are applicable to
term graph rewriting. The reverse does not hold. We gave a counter-example before:
Example 5.1, which we also have shown terminating with our developed termination order
in Chapter 6. We also want to present an ad-hoc proof of termination given in [30]. We
start by defining a weight function τ : T G → N. For a term graph S, τ(S) = m+ n+ p,
where m is the number of nodes with label f, where the first two argument nodes are
distinct, n is the number of nodes with label a and p is |S|. Then, S ⇒∪� T implies
τ(S) > τ(T), hence there is no infinite sequence of ⇒∪�-steps.

Some results on weak normalisation, also in the setting of acyclic term graph rewriting
with hyper-graphs, are by Rao [31]. He finds that a weakly normalising term rewrite
system induces a weakly normalising graph rewrite system for right-linear rules, and for
weakly innermost normalising rewrite steps.

59

7.3 Confluence

Finally we present some techniques to show termination of term graph rewriting. For
acyclic term graphs, Plump developed a recursive path order in [28]—which was the main
inspiration for our results in Chapter 5 and 6.

Then most results for termination work on a more general notion of graphs. These
graphs usually have cycles, have no distinguished root node, place more emphasis on
edges through edge labels—in short: they do not resemble terms very much. They are
thus not presented in Section 7.1.

One interesting line of work is by Bonfante and Guillaume in the context of natural
language processing [10, 9]. Here the rewrite rules are graphs which represent grammatical
transformations. Most notably these graphs are not size increasing, i.e. no new nodes are
added. The authors show termination of the rules by assigning weights to graphs based
on the nodes and edges in the graph. They then show a decrease of this weight for each
step. Here the rewrite relation prohibits application of the rule in case a node is part of
the context and part of the rewrite rule by the notion of context edges—a problem we
too presented in Chapter 6. They implemented their termination technique in the tool
Grew.1

Another termination technique for graph transformation systems is developed by
Bruggink et al [12], [11]. Also there the idea is to assign weights to a special form of
graphs called type graphs, and insisting on a strict decrease with transformation steps.
The later [11] extends the earlier work and adds tropical and arctic type graphs.

Based on these works Zantema et al transfer the above techniques to a term graph
setting in [37]—for left-linear and non-collapsing rules. The authors implemented the
techniques in Grez.2

With this we conclude our investigation of termination and consider some confluence
results for term graph rewriting.

7.3 Confluence
For confluence the relationship between term and term graph rewriting is reversed: If a
graph rewrite system is confluent then the corresponding term rewrite system is confluent.
Intuitively this makes sense: less rewrite steps are possible in the graph setting, which is
good for termination, but bad for confluence. We start by showing confluence results by
Plump [27]:

Lemma 7.11. Let R be a TRS and G(R) the corresponding GRS. If ⇒G(R) ∪ � is
confluent, then →R is confluent.

Proof. Let s, t, u be terms, where s →∗ u and u →∗ t, and term graphs S and T , such
that s = term(S) and t = term(T). By Lemma 4.2 and confluence of ⇒G(R) ∪ � a term
graph W exists such that S (⇒G(R) ∪ �)∗ W and T (⇒G(R) ∪ �)∗ W . By Lemma 7.9,
then s→∗R term(W) and t→∗R term(W). Hence, →R is confluent.

1cf. grew.loria.fr
2cf. www.ti.inf.uni-due.de/research/tools/grez/

60

http://grew.loria.fr
http://www.ti.inf.uni-due.de/research/tools/grez/

7.3 Confluence

The lemma relies on ⇒G(R) ∪ �, but we can use our investigation in Chapter 4 to
transfer it to other combinations. A counter example for the reverse direction is given
next:

Example 7.12. The following TRS R is confluent:

f(x)→ g(x, x) , a→ b , g(a, b)→ c , g(b, b)→ f(a) .

Consider the following sequence:

c →g(a, b)→ g(b, b)→ f(a)→ g(a, a) .

The corresponding graph rewrite system is not even confluent for ⇒ as can be seen next.
Note, that the rule f(x) → g(x, x) prevents the graph rewrite step g(a, b) → c (as x is
shared in the graph rewrite rule and no unsharing is present).

c ⇒
g

a b
⇒

g

b b
⇒

f

a
⇒

f

b

⇒

⇒
a

g

⇒

⇒
g

b
.

Additionally imposing (weak) normalisation remedies this situation.

Corollary 7.13. Let R be a TRS and G(R) the corresponding GRS. If ⇒G(R) ∪ � is
(weakly) normalising, then ⇒G(R) ∪ � if and only if →R is confluent.

Important for confluence are overlaps. Given S1 and S2 then two term graphs overlap
if there is a m1 : S1 →V T and m2 : S2 →V T . Two rules overlap if L1�n overlaps with
L2 for some n ∈ L1.

Two results on confluence that rely on overlaps, or rather the absence of overlaps, are
given in [1] and [8]. Ariola et al [1] show that their graph specifications are confluent
if there are no overlaps. If the rules are left-linear as well then confluence even holds
in the presence of uncollapsing. Also Barendsen [8] shows confluence of left-linear and
non-overlapping systems.

After investigating the termination and confluence behaviour in the previous two
sections, we now investigate how those two properties behave with respect to modularity.

61

7.4 Modularity

7.4 Modularity
Surprisingly many results are known for modularity of term graph rewriting. We present
them here—with reference to their underlying notion of term graph rewriting. All
presented result are based on acyclic formalisms.

We start by introducing an important notion for modularity: disjoint rewrite systems.
Two rewrite systems R1 and R2 are disjoint, if their respective signatures F1 and F2 are
disjoint, i.e., F1 ∩ F2 = ∅.

Interestingly enough modularity of termination and confluence again behave quite
differently for term and term graph rewriting. We start by modularity of termination
which is studied in [26], [27], [32], [33], [25]. Although there are small differences in the
underlying formalisms all find the following theorem.

Theorem 7.14. For two disjoint GRS G1 and G2, ⇒G1 ∪⇒G2 is terminating if and only
if ⇒G1 and ⇒G1 are terminating.

Here Plump [26], and Rao [32, 33] use hyper-graphs as their underlying formalism.
Rao [32, 33] incorporates collapsing by a union of the graph rewrite relation. He
proves that modularity of termination needs neither confluence nor termination [32],
and modularity of weak and strong normalisation, as well as semi-completeness and
completeness, with different extensions by constructing different hierarchical combinations
on function symbols [33].

Theorem 7.14 is also shown by Kurihara et al. [20] based on their non-copying term
rewriting approach to term graph rewriting—even if the rewrite systems share constructor
symbols. They do not incorporate an explicit collapsing relation. Based on the same
formalism Ohlebusch [25] provides a simple proof of the modularity of Theorem 7.14.
His main insight on simplifying the proof is similar to our insight of argument of term
graphs: instead of using multi-sets of sub-terms sets are sufficient.

In contrast to term rewriting, the union of disjoint systems need not preserve confluence.
Even worse for term graph rewriting wit collapsing confluence is not preserved under
signature extension. This is shown by the following example from [27].

Example 7.15. Consider the following left-linear GRS G:

a⇒ f(a) .

It is easy to see that G is confluent. But if we add a binary function symbol g confluence
is lost:

g

f

a

⇒G
g

a
≺

g

a a
⇒G

g

a f

a

�

g

f

a

.

In the presence of termination confluence of ⇒∪� is preserved by the union of two
disjoint systems as Plump shows in [27]:

62

7.5 Shared Nodes and Memoisation

Theorem 7.16. Let G1∪G2 be the union of two disjoint GRSs. If ⇒G1 ∪ � and ⇒G2 ∪ �
are confluent and terminating, then ⇒G1∪G2 ∪ � is confluent and terminating.

With this we move on towards the last section of this chapter: memoisation.

7.5 Shared Nodes and Memoisation
By sharing nodes we may share computation. Still there is a difference between sharing
computation, i.e. memoisation and shared nodes. The next example serves to highlight
this difference.
Example 7.17. Assume the linear GRS G, where abusing notation we assume that the
second rule takes n steps.

f

x
⇒

h

x
,

h

x
⇒n x .

The amount of steps we need depends on which redex node we choose. If we rewrite
the f-node first, we need one collapsing step and n+ 1 rewrite steps:

g

f h

a

⇒G

g

h h

a

<

g

h

a

⇒n
G

g

a
.

If we rewrite the h-node first, the derivation yields 2 · n+ 1 rewrite steps:
g

f h

a

⇒n
G

g

f

a

⇒G

g

h

a

⇒n
G

f

a
.

So while collapsing may save computation steps as in the first scenario, it is not
memoisation. In the second scenario with memoisation we could have saved the second
rewrite from the h-node by looking up the result.

Two approaches try to include memoisation to term graph rewriting—namely [16]
and [3]. In [16] Hoffmann combines memoisation and sharing in a formalism of graph
rewriting based on acyclic hyper-graphs. Therefore he incorporates dedicated rules for
memoisation: tabulation and look-up. He then keeps results stored within the graph.
The work by Avanzini et al. [3] is partly inspired by [16]. Also they introduce a formalism
based on graphs to enable sharing and avoid blow-up in size, together with memoisation,
i.e. tabulation to avoid re-computation.

With this we conclude our review of the literature of term graph rewriting. The
literature on term graph rewriting is very diverse—which also imposes challenges. Often
the differences of the underlying formalisms are small, but it is not easy to see what the
effects of these differences are—something we have already observed in Chapter 4.

63

8 Conclusion

We structure this conclusion along the three major blocks in this thesis: the influence of
collapsing on the graph rewrite relation in Chapter 4, the influence on termination of
term graph rewriting in Chapters 5 and 6, and the literature on term graph rewriting
in Chapter 7. For each block we briefly re-capture the main results, highlight the most
important insights, and show directions for future work.

8.1 On Collapsing
To investigate the influence of collapsing on the graph rewrite relation the leading
questions were: How to reasonably combine the graph rewrite relation with the collapsing
relation: through concatenation or union? And which collapsing relation to choose: �, <,
�!, or �!+? We studied the different combinations with respect to inclusion and normal
forms. Most importantly we provide notorious examples, which highlight the subtle
differences. When we combine ⇒ and < through concatenation, the obvious question is
whether to perform rewriting or collapsing first. If we collapse first, then we can rewrite
in the following:

< · ⇒
���⇒ ·< with rule ⇒ (?1) .

If on the other hand we had chosen to rewrite before collapsing, we could not have applied
the rule. As expected there is a dual scenario. In the following we cannot reach a term
graph if we collapse first. That is, here we need to collapse after the rewrite step:

⇒ ·<
���< · ⇒ with rule ⇒ (?2) .

Both scenarios, (?1) and (?2), show the limitations of the graph rewrite relation (⇒)
without collapsing. Interestingly enough, when we consider normal forms some differences
disappear, and we find a different picture:

NF(< · ⇒) (NF(⇒ ·<) = NF(⇒)

Informally speaking ⇒ ·< and ⇒ allow for un-intuitive normal forms like the left term
graph in (?1) which is in normal form. We here refer to un-intuitive from a term rewriting
perspective. To avoid this we need to incorporate collapsing. But as to the question

64

8.1 On Collapsing

of whether to collapse before or after the graph rewrite step, we know for n steps and
. = <, or . = �!:

. · (⇒ · .)n = (. · ⇒)n · .

That is, if we have more than one step we only need an additional pre-processing step to
apply a rule, or alternatively a post-processing step to reach a term graph. Thus the
difference between ⇒ ·< and ⇒∪� seems more interesting.

With ⇒ ·< we cannot perform a stand-alone collapsing step, but with ⇒∪� we can:

⇒∪�
���⇒ ·< .

On the other hand we need two steps in ⇒∪� to simulate one step of ⇒ ·<, e.g.
in (?1). Moreover, we could apply � several times, or just once, as we can see next:

� � or � (?3) .

Still the amount of (strict) collapsing steps is bounded in the size of the term graph—
and we can relate the number of steps between ⇒∪� and ⇒ ·<. For constants c1 and
c2 and n steps we have:

< · (⇒ ·<)n = (⇒∪�)n×c1+c2×n

There is a subtle difference between⇒ · �! and⇒∪�!+ though. This difference results
in the following:

�!· (⇒ · �!)n ((⇒∪�!+)
n×c1+c2×n

We show the difference by an example. Take again the rule in (?2). Because we can
choose either ⇒ or �!+ we can also choose to apply ⇒ subsequently more than once.
This we cannot do for ⇒ · �! and thus we cannot simulate the following rewrite sequence:

⇒ ⇒ �!+ (?4) .

The main take away of Chapter 4 is: it’s complicated. We see that small changes in how
we combine the graph rewrite relation with collapsing can have significant consequences.
As a rule of thumb we argue that ⇒∪� provides the most freedom, but ⇒ ·< and
< · ⇒ provide control. Hereby the latter, < · ⇒, is closer to term rewriting, because we
do not run into the problem described in (?1) where we cannot apply a rule based on
the “wrong” degree of sharing. On the other hand, if every term graph is kept maximally
shared by �!, we have the advantage that the result of � is predictable—that is, we
increase control over �. We would recommend to choose �! · ⇒ or ⇒ · �! over ⇒∪�!+ ,
though. The effects of ⇒∪�!+ are more difficult to predict as shown in (?4).

65

8.2 On Termination

Some of these differences disappear if we restrict the graph rewrite rules, for example
if we restrict to left-linear rules. Thus we argue that for future work one should address
what is the application of term graph rewriting. Much effort went towards term graph
rewriting as implementation of term rewriting. For future work it seems beneficial to find
application scenarios for term graph rewriting and derive requirements and restrictions
from theses scenarios. This could help to choose the “best” combination. When we are
interested in the number of steps, the choice does not vary significantly, as we have seen.

8.2 On Termination
The second major part of this thesis was motivated by the gap between termination of
term rewriting and termination of term graph rewriting. Our aim was to find out more
about this gap and design a termination technique directly for term graph rewriting.

Based on the ideas in [28] we designed a lexicographic path order, >lpo, on term graphs.
With >lpo we can orient the rewrite sequence from the introduction.

>lpo >lpo

If we can find an order on all potential rewrite steps with >lpo, we can conclude
termination. However we have a restriction on >lpo: it is defined only for term graphs
whose nodes are mutually unreachable.

To show that <lpo implies termination we employed and showed Kruskal’s Tree theorem
for term graphs. Informally it states that a wqo on Tops:

a v f v g v f v . . .

implies a wqo order on term graphs:

a vemb
f

vemb
g

vemb
f

vemb . . .

The main insight from this proof is that it is beneficial to treat the argument of a term
graph as one graph i.e. an inlet graph:

f
with the argument graph

This preserves the structure of the argument and does not implicitly split up the
argument into multiple argument graphs. It also slightly simplifies the proof as Higman’s
Lemma [15] can be omitted.

The main future challenge lies in implementing a termination technique and then
developing an automated termination prover for term graph rewriting. To achieve
automation we need a clear notion of context for term graphs. Therefore we need some
restriction on how a term graph or a rewrite step can look like. This again brings us
back to the conclusion we reached before: for a concrete application case some natural
restrictions may hold.

66

8.3 On Literature

8.3 On Literature
The third major block in this thesis is the related work and literature on term graphs. We
showed several different formalisms: acyclic and cyclic term graphs, term graphs based
on terms with markers or equations of terms, and term graphs based on hyper-graphs.
We then presented results on termination, confluence, modularity, and memoisation—for
these various formalisms.

One of the main insights from the related work is: there seems to be no general
agreement on what a term graph actually is, and no standard way to represent graphs,
rewrite systems, or collapsing. The main connection between the different formalisms is
their close relationship to term rewriting. But this relationship to term rewriting is very
different for every formalism. The relationship between the formalisms themselves hardly
seems to be studied at all. So when approaching a paper on term graphs, one always
needs to carefully study the underlying formalism first and check plenty of questions:
Do term graphs have cycles? How is the rewrite relation defined? Are they restricted
to left-linear rules? These small differences may have severe effects, thus they cannot
be glossed over. Most results seem to transfer easily, which can be problematic too. To
be sure one has to carefully check and re-prove a result—to find out that the result did
indeed transfer easily, and not much was gained by the effort.

Consequently we find many results on the relationship between term rewriting and
term graph rewriting, but not so many techniques to show a property like termination or
confluence directly, let alone automatically, for a given term graph rewrite system.

Finally we observe that the literature on term graph rewriting seems rather scattered.
The efforts go long back to the eighties. However as opposed to term rewriting, which is
well established, basic notions of term graph rewriting are still fluid. We can witness this
too as tools to analyse graph rewriting are only just emerging, but for a more general
graph setting.

We conclude the conclusion with describing the impact of this thesis. As mentioned
before, the results of Chapter 5 and 6 are published in [23]. Thus we presented the
results on the 8th of April 2016 at the 9th International Workshop on Computing with
Terms and Graphs (TERMGRAPH 2016), Eindhoven, Netherlands. Moreover I presented
Chapter 5 as a poster at the ACM student research competition in course of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL 2016), St Petersburg, Florida on the 21st and 22nd of January 2016. The poster
won the 3rd place in the graduate category. In course of the Oregon Programming
Languages Summer School (OPLSS) 2016 on 23rd of June 2016 I gave a student research
talk of the Chapter 5 and 6.

Finally I also gave a talk on this work in the workshop Logic, Complexity and
Automation (LC&A) 2016, which was part of the Computational Logic in the Alps (CLA
2016) on 6th of September 2016.

67

Bibliography
[1] Zena M. Ariola and Jan Willem Klop. Equational Term Graph Rewriting. Funda-

menta Informaticae, 26(3/4):207–240, 1996.

[2] Martin Avanzini. Verifying Polytime Computability Automatically. PhD thesis,
University of Innsbruck, 2013.

[3] Martin Avanzini and Ugo Dal Lago. On Sharing, Memoization, and Polynomial
Time. In 32nd International Symposium on Theoretical Aspects of Computer Science
(STACS 2015), volume 30, pages 62–75. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2015.

[4] Martin Avanzini and Georg Moser. Closing the Gap Between Runtime Complexity
and Polytime Computability. In Proceedings of the 21st International Conference on
Rewriting Techniques and Applications, volume 6 of Leibniz International Proceedings
in Informatics, pages 33–48. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2010.

[5] Martin Avanzini and Georg Moser. Complexity Analysis by Graph Rewriting. In
Proceedings of the 10th International Symposium on Functional and Logic Program-
ming, volume 6009 of Lecture Notes in Computer Science, pages 257–271. Springer,
2010.

[6] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, New York, USA, 1998.

[7] Hendrik P. Barendregt, Marko C.J.D. van Eekelen, John R.W. Glauert, Richard J.
Kennaway, Marinus J. Plasmeijer, and Ronana M. Sleep. Term Graph Rewriting.
In Parallel Architectures and Languages Europe, volume 259 of Lecture Notes in
Computer Science, pages 141–158. Springer Berlin Heidelberg, 1987.

[8] Erik Barendsen. Term Rewriting Systems, chapter Term Graph Rewriting, pages
712–743. Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 2003.

[9] Guillaume Bonfante and Bruno Guillaume. Non-simplifying Graph Rewriting Termi-
nation. In Proceedings of the 7th International Workshop on Computing with Terms
and Graphs, volume 110 of Electronic Proceedings in Theoretical Computer Science,
pages 4–16. Open Publishing Association, 2013.

[10] Guillaume Bonfante and Bruno Guillaume. Non-size increasing Graph Rewriting for
Natural Language Processing. Mathematical Structures in Computer Science, 2013.
To Appear.

68

Bibliography

[11] H. J. Sander Bruggink, Barbara König, Dennis Nolte, and Hans Zantema. Proving
Termination of Graph Transformation Systems Using Weighted Type Graphs over
Semirings. In Graph Transformation, volume 9151 of Lecture Notes in Computer
Science, pages 52–68. Springer International Publishing, 2015.

[12] H. J. Sander Bruggink, Barbara König, and Hans Zantema. Termination analysis
for graph transformation systems. In Proceedings of the 8th IFIP TC 1/WG 2.2
International Conference on Theoretical Computer Science, volume 8705 of LNCS,
pages 179–194. Springer, 2014.

[13] Nachum Dershowitz. Termination of Rewriting. Journal of Symbolic Computation,
3(1):69 – 115, 1987.

[14] Jean Goubault-Larrecq. Well-Founded Recursive Relations. In Proceedings of the
15th International Workshop on Computer Science Logic, pages 484–497, 2001.

[15] Graham Higman. Ordering by Divisibility in Abstract Algebras. Procedings of the
London Mathematical Society, 3(2):326–336, 1952.

[16] Berthold Hoffmann. Term Rewriting with Sharing and Memoization. In Proceedings
of the 3rd International Conference on Algebraic and Logic Programming, pages
128–142. Springer, 1992.

[17] Berthold Hoffmann and Detlef Plump. Implementing Term Rewriting by Jungle
Evaluation. Theoretical Informatics and Applications, 25:445–472, 1991.

[18] Richard J. Kennaway, Jan Willem Klop, Michael R. Sleep, and Fer-Jan de Vries. On
the Adequacy of Graph Rewriting for Simulating Term Rewriting. ACM Transactions
on Programming Languages and Systems, 16(3):493–523, 1994.

[19] Joseph B. Kruskal. Well-Quasi-Ordering, The Tree Theorem, and Vazsonyi’s Con-
jecture. Transactions of the American Mathematical Society, 95(2):210–225, 1960.

[20] Masahito Kurihara and Azuma Ohuchi. Modularity in Noncopying Term Rewriting.
Theoretical Computer Science, 152(1):139–169, 1995.

[21] A. Middeldorp and H. Zantema. Simple Termination of Rewrite Systems. Theoretical
Computer Science, 175:127–158, 1997.

[22] Aart Middeldorp. Term Rewriting. Lecture Notes, 2009. University of Innsbruck.

[23] Georg Moser and Maria A Schett. Kruskal’s Tree Theorem for Acyclic Term Graphs.
In Proceedings of the 9th International Workshop on Computing with Terms and
Graphs, volume 225 of Electronic Proceedings in Theoretical Computer Science, pages
25–34. Open Publishing Association, 2016.

[24] Crispin St. J. A. Nash-Williams. On Well-Quasi-Ordering Finite Trees. Mathematical
Proc. Cambridge Philosophical Society, 59:833–835, 1963.

69

Bibliography

[25] Enno Ohlebusch. Modularity of Termination for Disjoint Term Graph Rewrite
Systems: A Simple Proof. Bulletin of the European Association for Theoretical
Computer Science, 66, 1998.

[26] Detlef Plump. Implementing Term Rewriting by Graph Reduction: Termination of
Combined Systems. In Proceedings of the International Workshop on Conditional
Term Rewriting Systems, pages 307–317, 1990.

[27] Detlef Plump. Collapsed Tree Rewriting: Completeness, Confluence, and Modularity.
In Proceedings of the 3rd International Workshop on Conditional Term Rewriting
Systems, pages 97–112. Springer, 1993.

[28] Detlef Plump. Simplification Orders for Term Graph Rewriting. In Proceedings
of the 22nd International Symposium on Mathematical Foundations of Computer
Science, pages 458–467. Springer Berlin Heidelberg, 1997.

[29] Detlef Plump. Handbook of Graph Grammars and Computing by Graph Transfor-
mation, volume 2, chapter Term Graph Rewriting, pages 3–61. World Scientific,
1999.

[30] Detlef Plump. Essentials of Term Graph Rewriting. Electronic Notes in Theoretical
Computer Science, 51:277–289, 2002.

[31] M. R. K. Krishna Rao. Graph Reducibility of Term Rewriting Systems. In Proceedings
of the 20th International Symposium on Mathematical Foundations of Computer
Science, pages 371–381, 1995.

[32] M.R.K. Krishna Rao. Modularity of Termination in Term Graph Rewriting. In
Proceedings of the 7th International Conference on Rewriting Techniques and Appli-
cations, volume 1103 of Lecture Notes in Computer Science, pages 230–244. Springer
Berlin Heidelberg, 1996.

[33] M.R.K. Krishna Rao. Modular aspects of term graph rewriting. Theoretical Computer
Science, 208(1-2):59 – 86, 1998.

[34] TeReSe, editor. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 2003.

[35] Yoshihito Toyama. On the Church-Rosser property for the direct sum of term
rewriting systems. Journal of the ACM, 34(1):128–143, 1987.

[36] Roel de Vrijer Vincent van Oostrom. Term Rewriting Systems, chapter Strategies,
pages 475–547. Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press, 2003.

[37] Hans Zantema, Dennis Nolte, and Barbara König. Termination of Term Graph
Rewriting. In Proceedings of the 15th International Workshop on Termination, pages
14:1–14:5, 2016.

70

Index

G�u, see sub-graph
F , see signature
G, see rewrite system, term graph
P(A), 4
R, see rewrite system, term
Top, 35
Tops, 35
arg, see argument graph
�, see collapsing, strict
<, see collapsing
�!+ , defined as � · �!, 23
◦, see fuction, composition
�! · ⇒, 26, 27, 31
< · ⇒, 25, 27, 30
⇒ · �!, 26, 27, 30, 31
⇒ ·<, 25, 27, 29, 30
⇒∪�!+ , 28, 30, 31
⇒∪�, 28–31
∼=, see isomorphic
�, 42, 44
rt, see root
wemb, see embedding
>lpo, see lexicographic path order
term, see termgraph, to term
⊕, see union of graphs
f−1, see function, inverse
G(R), GRS constructed from TRS R, 19
NF, set of normal forms, see normal form
Pos, set of positions, see position
R(G), TRS constructed from the GRS G,

19
T (F ,V), set of terms, see term
T G(F ,V), set of term graphs, see term

graph
V, variables, 6
Var(G), set of variables in a graph, 11

ar, arity, 6
lab(n), label of n, see label
N , set of nodes, 9
t|p, sub-term at position p, 6
., arbitrary binary relation, 4
succ(n), ordered sequence of successor

nodes of n, 9
treeT , canonical tree representation from

term, 19
treeG , tree representation from term graph,

19
n

i
⇀ ni, ni is ith successor of n, 10

acyclic, 10
adequacy, 20
anti-symmetric, 4
argument graph, 39, 47
asymmetric, 4

bisimilarity, 13

canonical term graph, 12
chain, 5
closure

reflexive, 4
transitive, 4
under context, 7
under substitution, 7

collapsing, 12, 21
strict, 12

compatible, 7
complete, 5
completeness, 21
confluent, 5, 60
constant, 6
context

term, 7

71

Index

term graph, 54
cyclic term graph, 57, 58

disjoint, 62

embedding
term graphs, 44
terms, 8

function
co-domain, 5
composition, 5
domain, 5
inverse, 5

ground, 6
GRS, see rewrite system, term graph

hyper-graph, 56

inlet graph, 39
inlets, 39
irreflexive, 4
isomorphic, 12

label, 9
lexicographic path order

term, 7
term graph, 50

linear, left-linear, right-linear, 7

matching, 15
maximally shared, 13
memoisation, 63
modularity

confluence, 62
termination, 62

morphism, 12, 15

node
above, 10
below, 10
parallel, 10
shared, 12, 18

non-copying term rewriting, 57
normal form, 4

order
lexicographic path, 50
partial, 5
pre-order, 5
proper, 5
reduction, 7
rewrite, 7
simplification, 49
well-quasi, 5

overlap, 61

path, 10
position

term, 6
term graph, 11

precedence, 7, 36

redex node, 15
redirect edges, 10, 15
redirection of nodes, 10
reflexive, 4
rewrite rule

term, 6
term graph, 14

rewrite step
term, 7
term graph, 16

rewrite system
term, 6
term graph, 14

root, 10

semi-complete, 5
sequence

bad, 5, 47
good, 5

signature, 6
simplification order

term graphs, 49
terms, 7

size
term, 6
term graph, 10

soundness, 20, 21
strongly normalising, 5

72

Index

sub-graph, 10, 39
sub-term, 6
substitution, 7
symmetric, 4

term, 6
term dag, 11
term graph, 11

to term, 18
terminating, 5, 7, 59
transitive, 4
TRS, see rewrite system, term

uncollapsing, 22
union of graphs, 10, 15
unique normal forms, 5

variable sharing, 14

weakly normalising, 5, 59, 61
well-founded, 5
wqo, see order, well-quasi

73

	Introduction
	Preliminaries
	Sets, Relations, Orders, and Functions
	Term Rewriting

	Term Graph Rewriting
	Term Graphs
	Term Graph Rewriting
	From Terms to Term Graphs and Back Again

	Collapsing and Rewriting
	Adequacy
	Combine Rewriting and Collapsing
	Concatenating Collapse
	Union Collapse
	Between Concatenation and Union

	Kruskal's Tree Theorem for Term Graphs
	The Argument of a Term Graph
	Embedding
	Proof

	Termination of Term Graph Rewriting
	Lexicographic Path Order
	Non-Termination

	Related Work
	Representations of Term Graphs
	Termination
	Confluence
	Modularity
	Shared Nodes and Memoisation

	Conclusion
	On Collapsing
	On Termination
	On Literature

	Bibliography
	Index

